论文标题

迭代量子辅助特征索

Iterative Quantum Assisted Eigensolver

论文作者

Bharti, Kishor, Haug, Tobias

论文摘要

估计汉密尔顿人基础状态的任务是物理学中的一个重要问题,其应用从固态物理学到组合优化。我们提供了一种混合量子古典算法,用于近似于适用于当前量子计算机的方式,该算法以强大的Krylov子空间方法为基础。我们的算法会使用任何给定的初始状态和描述哈密顿量的一级人物系统地构建ANSATZ。量子计算机的唯一任务是测量重叠,不需要反馈循环。可以在当前的量子硬件上有效地进行测量,而无需进行任何复杂的测量,例如Hadamard测试。最后,一台经典计算机求解了一个四局部约束的优化程序。我们的算法可以重复使用以前的测量来计算广泛的哈密顿量的基态,而无需额外的量子资源。此外,我们演示了解决包括数千个Qubits组成的问题的算法。该算法几乎适用于初始状态的每一个随机选择,并规避了贫瘠的高原问题。

The task of estimating the ground state of Hamiltonians is an important problem in physics with numerous applications ranging from solid-state physics to combinatorial optimization. We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian that builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers. Our algorithm systematically constructs the Ansatz using any given choice of the initial state and the unitaries describing the Hamiltonian. The only task of the quantum computer is to measure overlaps and no feedback loops are required. The measurements can be performed efficiently on current quantum hardware without requiring any complicated measurements such as the Hadamard test. Finally, a classical computer solves a well characterized quadratically constrained optimization program. Our algorithm can reuse previous measurements to calculate the ground state of a wide range of Hamiltonians without requiring additional quantum resources. Further, we demonstrate our algorithm for solving problems consisting of thousands of qubits. The algorithm works for almost every random choice of the initial state and circumvents the barren plateau problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源