论文标题
线性混合模型下的强大估计:最小密度差异方法
Robust Estimation under Linear Mixed Models: The Minimum Density Power Divergence Approach
论文作者
论文摘要
可以使用线性混合模型(LMM)分析许多真实数据集。由于这些通常是基于正态性假设,因此在与模型的小偏差下,当通过经典方法估算相关参数时,推断可能非常不稳定。另一方面,测量两个概率密度函数之间差异的密度差异(DPD)家族已成功地用于构建与效率最小损失相关的高稳定性的稳健估计器。在这里,我们为LMMS中的独立但非分布的观察值开发了最小DPD估计器(MDPDE)。我们证明了理论特性,包括一致性和渐近正态性。研究了影响函数和灵敏度度量,以探索鲁棒性。作为基于数据的MDPDE调谐参数$α$的选择非常重要,我们建议两个候选人作为“最佳”选择,其中最佳性是选择特定数据集所需的最强大的下降。我们进行了一项模拟研究,比较了所提出的MDPDE,对于$α$的不同值与S-估计器,M估计器和经典的最大似然估计量,考虑到不同的污染水平。最后,我们在真实数据示例中说明了提案的绩效。
Many real-life data sets can be analyzed using Linear Mixed Models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non identically distributed observations in LMMs. We prove the theoretical properties, including consistency and asymptotic normality. The influence function and sensitivity measures are studied to explore the robustness properties. As a data based choice of the MDPDE tuning parameter $α$ is very important, we propose two candidates as "optimal" choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of $α$, with the S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.