论文标题
Banach空间中非自治功能冲动进化包裹物的存在和近似可控性
Existence and approximate controllability of non-autonomous functional impulsive evolution inclusions in Banach spaces
论文作者
论文摘要
在本文中,我们关注的是一类冲动功能差分控制系统的近似可控性结果,该系统涉及Banach空间中的时间依赖性操作员。首先,我们显示了在可分离的反射性巴拉赫空间中非自主功能性脉冲进化包含的温和解决方案,并借助进化家族,以及对多价值地图的Leray-Schauder固定点定理的概括。为了建立足够的条件以实现我们问题的近似可控性,我们首先考虑一个线性 - 季度调节器问题,并以反馈形式获得最佳控制,其中包含由偶性映射组成的分解操作员。借助此最佳控制,我们证明了线性系统的近似可控性,因此为问题的近似可控性提供了足够的条件。此外,在本文中,我们纠正了文献中可用的相关作品的几个缺点,即正确识别Banach空间中的分解操作员,在存在冲动效应的情况下对相位空间的表征以及缺乏操作员的紧凑性$ h(\ cdot)\ mapsto \ mapsto \ int_ {0}^{\ cdot} \ mathrm {u}(\ cdot,s)h(s) \ Mathrm {C}([[0,T]; \ Mathbb {y}),$,其中$ \ Mathbb {y} $是Banach空间,$ \ Mathrm {u}(\ cdot,\ cdot)$是进化家庭等。最后,我们提供了一个具体的示例来说明我们的结果。
In this paper, we are concerned with the approximate controllability results for a class of impulsive functional differential control systems involving time dependent operators in Banach spaces. First, we show the existence of a mild solution for non-autonomous functional impulsive evolution inclusions in separable reflexive Banach spaces with the help of the evolution family and a generalization of the Leray-Schauder fixed point theorem for multi-valued maps. In order to establish sufficient conditions for the approximate controllability of our problem, we first consider a linear-quadratic regulator problem and obtain the optimal control in the feedback form, which contains the resolvent operator consisting of duality mapping. With the help of this optimal control, we prove the approximate controllability of the linear system and hence derive sufficient conditions for the approximate controllability of our problem. Moreover, in this paper, we rectify several shortcomings of the related works available in the literature, namely, proper identification of resolvent operator in Banach spaces, characterization of phase space in the presence of impulsive effects and lack of compactness of the operator $h(\cdot)\mapsto \int_{0}^{\cdot}\mathrm{U}(\cdot,s)h(s)\mathrm{d} s : \mathrm{L}^{1}([0,T];\mathbb{Y}) \rightarrow \mathrm{C}([0,T];\mathbb{Y}),$ where $\mathbb{Y}$ is a Banach space and $\mathrm{U}(\cdot,\cdot)$ is the evolution family, etc. Finally, we provide a concrete example to illustrate the efficiency of our results.