论文标题
定量论证摘要及其他:跨域关键点分析
Quantitative Argument Summarization and Beyond: Cross-Domain Key Point Analysis
论文作者
论文摘要
当总结有关某些主题的观点,论点或观点的集合时,通常不仅需要提取最明显的观点,而且要量化其流行率。传统上,关于多文章摘要的工作一直集中在创建文本摘要上,这些摘要缺乏这种定量方面。最近的工作提议通过将论点映射到一小部分专家生成的关键点来总结参数,每个关键点的显着性与其匹配参数的数量相对应。当前的工作在两个重要方面推进了关键点分析:首先,我们开发了一种自动提取关键点的方法,该方法可以完全自动分析,并证明可以实现与人类专家相当的绩效。其次,我们证明了关键点分析的适用性远远超出了论证数据。使用对公开参数数据集培训的模型,我们在两个其他领域中获得了有希望的结果:市政调查和用户评论。另一个贡献是对参数到键匹配模型的深入评估,我们在此大大表现以前的结果。
When summarizing a collection of views, arguments or opinions on some topic, it is often desirable not only to extract the most salient points, but also to quantify their prevalence. Work on multi-document summarization has traditionally focused on creating textual summaries, which lack this quantitative aspect. Recent work has proposed to summarize arguments by mapping them to a small set of expert-generated key points, where the salience of each key point corresponds to the number of its matching arguments. The current work advances key point analysis in two important respects: first, we develop a method for automatic extraction of key points, which enables fully automatic analysis, and is shown to achieve performance comparable to a human expert. Second, we demonstrate that the applicability of key point analysis goes well beyond argumentation data. Using models trained on publicly available argumentation datasets, we achieve promising results in two additional domains: municipal surveys and user reviews. An additional contribution is an in-depth evaluation of argument-to-key point matching models, where we substantially outperform previous results.