论文标题
与椭圆形的积分相关的迭代积分的数值评估
Numerical evaluation of iterated integrals related to elliptic Feynman integrals
论文作者
论文摘要
我们报告了GINAC中的实现,以评估与椭圆形Feynman积分相关的迭代积分,以数值为单位,以在集成媒体的串联扩展区域内与任意精度。该实现包括模块化表单的迭代积分以及涉及kronecker系数函数的迭代积分$ g^{(k)}(z,z,τ)$。对于Kronecker系数函数,$dτ$中的迭代积分和$ dz $已实现。这包括椭圆形多重聚类。
We report on an implementation within GiNaC to evaluate iterated integrals related to elliptic Feynman integrals numerically to arbitrary precision within the region of convergence of the series expansion of the integrand. The implementation includes iterated integrals of modular forms as well as iterated integrals involving the Kronecker coefficient functions $g^{(k)}(z,τ)$. For the Kronecker coefficient functions iterated integrals in $dτ$ and $dz$ are implemented. This includes elliptic multiple polylogarithms.