论文标题

自动预测中世纪阿拉伯语

Automated Prediction of Medieval Arabic Diacritics

论文作者

Alnajjar, Khalid, Hämäläinen, Mika, Partanen, Niko, Rueter, Jack

论文摘要

这项研究使用了一种角色级别的神经机器翻译方法,该方法对基于短期记忆的长期双向复发性神经网络结构进行了训练,以对中世纪的阿拉伯语进行大变化。结果从用作基线的在线工具改善。通过PYPI和Zenodo上可用的Python软件包公开发布了变音模型。我们发现,在优化可行的预测模型时应考虑上下文大小。

This study uses a character level neural machine translation approach trained on a long short-term memory-based bi-directional recurrent neural network architecture for diacritization of Medieval Arabic. The results improve from the online tool used as a baseline. A diacritization model have been published openly through an easy to use Python package available on PyPi and Zenodo. We have found that context size should be considered when optimizing a feasible prediction model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源