论文标题

布鲁维尔韧性的证明

A proof of Brouwer's toughness conjecture

论文作者

Gu, Xiaofeng

论文摘要

连接的图$ g $的韧性$ t(g)$定义为$ t(g)= \ min \ {\ frac {| s | |} {c(g-s)} \} $,其中将最低限制在所有适当的子集对$ s \ subset v(g)$ c(g)$ c(g-s)$ c(g-s)$ c(g s)$ s $ c(g)$ c(g)中$ c(g)$ c(g)$ c(g)令$λ$表示图的邻接矩阵的第二大绝对特征值。对于任何连接的$ d $ - 台式$ g $,Alon已证明$ t(g)> \ frac {1} {3}(\ frac {d^2} {dλ+λ^2} -1)$强烈的猜想在繁殖时。 Brouwer独立地发现了任何连接的$ d $ regragh Graph $ g $的更好界限$ t(g)> \ frac {d}λ-2$,而他还猜想下界可以将下限提高到$ t(g)\ ge \ ge \ frac {d}λ-λ-1$。我们确认这个猜想。

The toughness $t(G)$ of a connected graph $G$ is defined as $t(G)=\min\{\frac{|S|}{c(G-S)}\}$, in which the minimum is taken over all proper subsets $S\subset V(G)$ such that $c(G-S)>1$, where $c(G-S)$ denotes the number of components of $G-S$. Let $λ$ denote the second largest absolute eigenvalue of the adjacency matrix of a graph. For any connected $d$-regular graph $G$, it has been shown by Alon that $t(G)>\frac{1}{3}(\frac{d^2}{dλ+λ^2}-1)$, through which, Alon was able to show that for every $t$ and $g$ there are $t$-tough graphs of girth strictly greater than $g$, and thus disproved in a strong sense a conjecture of Chvátal on pancyclicity. Brouwer independently discovered a better bound $t(G)>\frac{d}λ-2$ for any connected $d$-regular graph $G$, while he also conjectured that the lower bound can be improved to $t(G)\ge \frac{d}λ - 1$. We confirm this conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源