论文标题
在异质多孔介质中,用于耦合水力化学过程的本地保守的混合元件框架
A Locally Conservative Mixed Finite Element Framework for Coupled Hydro-Mechanical-Chemical Processes in Heterogeneous Porous Media
论文作者
论文摘要
本文为异质多孔培养基中的耦合水力机械化学过程提供了一个混合有限元框架。该框架结合了两种局部保守的离散化方案:(1)一种富含反应性流动的Galerkin方法,以及(2)一种用于耦合流体流量和固体变形的三场混合有限元方法。这种组合确保了当地的质量保护,这对于在异质多孔培养基中的流动和运输至关重要,计算成本相对便宜。构建了特定类别的框架,用于方解石沉淀/溶解反应,并结合其对流体粘度和固体变形的非线性影响。还提出了用于解决非线性代数系统的线性化方案和算法。通过各种复杂性的数值示例,我们证明了所提出的框架是一种可靠,有效的计算方法,用于模拟可变形多孔介质中的反应性流和传输,即使材料特性是强烈的异质性和各向异性的。
This paper presents a mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media. The framework combines two types of locally conservative discretization schemes: (1) an enriched Galerkin method for reactive flow, and (2) a three-field mixed finite element method for coupled fluid flow and solid deformation. This combination ensures local mass conservation, which is critical to flow and transport in heterogeneous porous media, with a relatively affordable computational cost. A particular class of the framework is constructed for calcite precipitation/dissolution reactions, incorporating their nonlinear effects on the fluid viscosity and solid deformation. Linearization schemes and algorithms for solving the nonlinear algebraic system are also presented. Through numerical examples of various complexity, we demonstrate that the proposed framework is a robust and efficient computational method for simulation of reactive flow and transport in deformable porous media, even when the material properties are strongly heterogeneous and anisotropic.