论文标题

严格凸出的射击歧管的特侧刚性

Entropy rigidity for foliations by strictly convex projective manifolds

论文作者

Savini, Alessio

论文摘要

让$ n $是一个紧凑型歧管,带有叶子$ \ mathscr {f} _n $,其叶子是紧凑的严格凸出凸出歧管。令$ m $成为一个紧凑的歧管,带有叶子$ \ mathscr {f} _m $,其叶子是紧凑的尺寸紧凑的双曲线歧管,其尺寸大于或等于$ 3 $。假设有一个叶状的同构$ f:(n,\ mathscr {f} _n)\ rightArrow(m,\ m m缩{f} _m)$,当限制为叶子时,它是$ c^1 $ regular。在以前的情况下,存在一个明确定义的叶卷熵的概念$ h(n,\ mathscr {f} _n)$和$ h(m,\ mathscr {f} _m)$,并且它保留$ h(m,\ m m m马理{f} {f} _m _m)另外,如果平等成立,则叶子必须是同性恋的。

Let $N$ be a compact manifold with a foliation $\mathscr{F}_N$ whose leaves are compact strictly convex projective manifolds. Let $M$ be a compact manifold with a foliation $\mathscr{F}_M$ whose leaves are compact hyperbolic manifolds of dimension bigger than or equal to $3$. Suppose to have a foliation-preserving homeomorphism $f:(N,\mathscr{F}_N) \rightarrow (M,\mathscr{F}_M)$ which is $C^1$-regular when restricted to leaves. In the previous situation there exists a well-defined notion of foliated volume entropies $h(N,\mathscr{F}_N)$ and $h(M,\mathscr{F}_M)$ and it holds $h(M,\mathscr{F}_M) \leq h(N,\mathscr{F}_N)$. Additionally, if equality holds, then the leaves must be homothetic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源