论文标题

光场显着对象检测:评论和基准测试

Light Field Salient Object Detection: A Review and Benchmark

论文作者

Fu, Keren, Jiang, Yao, Ji, Ge-Peng, Zhou, Tao, Zhao, Qijun, Fan, Deng-Ping

论文摘要

显着对象检测(SOD)是计算机视觉中的长期研究主题,在过去十年中吸引了越来越多的研究兴趣。本文为光场草皮提供了首个全面的综述和基准,而光场草皮长期以来一直缺乏显着性社区。首先,我们介绍有关光场(包括理论和数据表格)的初步知识,然后回顾有关光场草皮的现有研究,涵盖了十种传统模型,七个基于深度学习的模型,一个比较研究和一项简短的综述。还用详细的信息和统计分析总结了光场草皮的现有数据集。其次,我们在四个广泛使用的光场数据集上基于九种代表性的光场SOD模型以及几个尖端的RGB-D SOD模型,从中实现了洞察力的讨论和分析,包括光场SOD和RGB-D SOD模型之间的比较。此外,由于数据集以其当前形式的不一致,我们进一步生成了不一致数据集的完整数据和补充焦点堆栈,深度图和多视图图像,从而使其一致且统一。我们的补充数据使通用基准成为可能。最后,由于光场草皮是一个非常特殊的问题,归因于其多样化的数据表示和对采集硬件的高度依赖,这使其与其他显着性检测任务有很大差异,因此我们为挑战和未来方向提供了9个提示,并概述了一些开放问题。我们希望我们的审查和基准测试能够帮助推进该领域的研究。我们的项目网站https://github.com/kerenfu/lfsod-survey(包括收集的模型,数据集,基准测试结果和补充灯场数据集)在内的所有材料都将公开使用。

Salient object detection (SOD) is a long-standing research topic in computer vision and has drawn an increasing amount of research interest in the past decade. This paper provides the first comprehensive review and benchmark for light field SOD, which has long been lacking in the saliency community. Firstly, we introduce preliminary knowledge on light fields, including theory and data forms, and then review existing studies on light field SOD, covering ten traditional models, seven deep learning-based models, one comparative study, and one brief review. Existing datasets for light field SOD are also summarized with detailed information and statistical analyses. Secondly, we benchmark nine representative light field SOD models together with several cutting-edge RGB-D SOD models on four widely used light field datasets, from which insightful discussions and analyses, including a comparison between light field SOD and RGB-D SOD models, are achieved. Besides, due to the inconsistency of datasets in their current forms, we further generate complete data and supplement focal stacks, depth maps and multi-view images for the inconsistent datasets, making them consistent and unified. Our supplemental data makes a universal benchmark possible. Lastly, because light field SOD is quite a special problem attributed to its diverse data representations and high dependency on acquisition hardware, making it differ greatly from other saliency detection tasks, we provide nine hints into the challenges and future directions, and outline several open issues. We hope our review and benchmarking could help advance research in this field. All the materials including collected models, datasets, benchmarking results, and supplemented light field datasets will be publicly available on our project site https://github.com/kerenfu/LFSOD-Survey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源