论文标题
具有声音边界的半导体流体力学模型的径向溶液
Radial solutions of the hydrodynamic model of semiconductors with sonic boundary
论文作者
论文摘要
本文的目的是研究由具有声音边界的Euler-Poisson方程表示的半导体稳定流体动力模型的径向溶液。径向亚音溶液的存在和唯一性,以及径向超音速解的存在是通过使用能量方法和紧凑度方法得出的,但在掺杂曲线的一般条件下。特别是,对于径向超音速解决方案,更难通过高维空间和声音边界的效果获得相关估计,因此我们使用特殊的迭代来完成证明。在一维情况下,获得的结果基本上改善并发展了先前的研究。
The purpose of this paper is to study radial solutions for steady hydrodynamic model of semiconductors represented by Euler-Poisson equations with sonic boundary. The existence and uniqueness of radial subsonic solution, and the existence of radial supersonic solutions are derived by using the energy method and the compactness method, but under a general condition of the doping profile. In particular, for radial supersonic solutions, it is more difficult to get the related estimates by the effect of high dimensional space and the sonic boundary, so we apply a special iteration to complete the proofs. The results obtained essentially improve and develop the previous studies in the one-dimensional case.