论文标题

有限组的最大订单亚组可除以所有素数

Finite groups whose maximal subgroups of order divisible by all the primes are supersolvable

论文作者

Moretó, Alexander

论文摘要

我们将有限的组$ g $与该物业一起研究,该物业对于$ g $中的任何子组$ m $ M $ Maxal,其订单可除以$ | g | $,$ m $的所有主要除数,$ m $都是可验证的。我们表明,任何非亚伯语简单组都可以作为此类组的组成因素出现,并且如果$ g $是可解决的,那么niltotency的长度和等级是任意的。另一方面,对于每个Prime $ P $,此类组的$ P $长度最多为$ 1 $。这回答了V. Monakhov在Kourovka笔记本上提出的问题。

We study finite groups $G$ with the property that for any subgroup $M$ maximal in $G$ whose order is divisible by all the prime divisors of $|G|$, $M$ is supersolvable. We show that any nonabelian simple group can occur as a composition factor of such a group and that, if $G$ is solvable, then the nilpotency length and the rank are arbitrarily large. On the other hand, for every prime $p$, the $p$-length of such a group is at most $1$. This answers questions proposed by V. Monakhov in The Kourovka Notebook.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源