论文标题
了解$ \ mathrm {cu_ {2x} hg_ {2-x} gete_4} $结构使用谐振X射线衍射
Understanding Cu Incorporation in the $\mathrm{Cu_{2x}Hg_{2-x}GeTe_4}$ Structure using Resonant X-ray Diffraction
论文作者
论文摘要
基于$ \ mathrm {cu_ {2x} hg_ {2-x} gete_4} $ Alloy化合物(其中0 $ \ leq $ x $ x $ x $ x $ \ leq $ 1)make $ \ natrm {cu_ {cu_ {cu_ {cu_ {cu_ {cu_ {cu_ {2x cu_ {cu_ {cu_ {cu_ {2x cu_ {cu_ {cu_ {2x get_2-2-2-1热电学。虽然CU在此过程中显然起着作用,但cu确切地将Cu纳入$ \ m mathrm {cu_ {2x} hg_ {2-x} gete_4} $ crystal结构以及这如何影响载体浓度。在这项工作中,我们使用谐振能量X射线衍射(REXD)实验和密度功能理论(DFT)计算的组合来阐明Cu融合到$ \ Mathrm {Cu_ {2x} hg_ {2x} hg_ {2-x} hg {2-x} gete_4} $结构。 rexd跨越$ \ mathrm {Cu_k} $ edge促进了在$ \ mathrm {cu_ {2x} hg_ {2-x} gete_4} $合金中的cu compionation的表征,并启用抗位于抗点缺陷的直接量化。我们发现Cu以2:1的比例取代Hg,其中Cu歼灭了空缺并与Hg原子交换。 DFT计算证实了这一结果,并进一步揭示了Cu的掺入在填充另一个平面之前优先发生在Z = 1/4或Z = 3/4平面之一上。此外,发现$ \ mathrm {cu_ {hg}} $抗位点缺陷被rexD量化的量与实验测量的孔浓度成正比,这表明$ \ mathrm {cu_ {cu_ {hg}} $缺损是用于调谐载载载的动力,是在驱动力的驱动力浓度。 $ \ mathrm {cu_ {2x} hg_ {2-x} gete_4} $ Alloy。这里发现的晶体结构之间的链接,或更具体地说,抗位点缺陷,载体浓度可以扩展到相似的阳离子隔离材料系统,并将通过缺陷工程有助于改善热电和其他功能材料的发展。
The ability to control carrier concentration based on the extent of Cu solubility in the $\mathrm{Cu_{2x}Hg_{2-x}GeTe_4}$ alloy compound (where 0 $\leq$ x $\leq$ 1) makes $\mathrm{Cu_{2x}Hg_{2-x}GeTe_4}$ an interesting case study in the field of thermoelectrics. While Cu clearly plays a role in this process, it is unknown exactly how Cu incorporates into the $\mathrm{Cu_{2x}Hg_{2-x}GeTe_4}$ crystal structure and how this affects the carrier concentration. In this work, we use a combination of resonant energy X-ray diffraction (REXD) experiments and density functional theory (DFT) calculations to elucidate the nature of Cu incorporation into the $\mathrm{Cu_{2x}Hg_{2-x}GeTe_4}$ structure. REXD across the $\mathrm{Cu_k}$ edge facilitates the characterization of Cu incorporation in the $\mathrm{Cu_{2x}Hg_{2-x}GeTe_4}$ alloy and enables direct quantification of anti-site defects. We find that Cu substitutes for Hg at a 2:1 ratio, wherein Cu annihilates a vacancy and swaps with a Hg atom. DFT calculations confirm this result and further reveal that the incorporation of Cu occurs preferentially on one of the z = 1/4 or z = 3/4 planes before filling the other plane. Furthermore, the amount of $\mathrm{Cu_{Hg}}$ anti-site defects quantified by REXD was found to be directly proportional to the experimentally measured hole concentration, indicating that the $\mathrm{Cu_{Hg}}$ defects are the driving force for tuning carrier concentration in the $\mathrm{Cu_{2x}Hg_{2-x}GeTe_4}$ alloy. The link uncovered here between crystal structure, or more specifically anti-site defects, and carrier concentration can be extended to similar cation-disordered material systems and will aid the development of improved thermoelectric and other functional materials through defect engineering.