论文标题

在曲折几乎复杂的结构上

On Twistor Almost Complex Structures

论文作者

Cahen, Michel, Gutt, Simone, Rawnsley, John

论文摘要

在本文中,我们研究了两个天然几乎复杂的结构的可集成性问题$ j^{\ pm} _ \ nabla $在Twistor space $ j(m,g)上定义的均值差异$ m $,带有其他结构$ g $和$ g $和$ \ nabla $ a $ a $ g $ g $ -g $ -contection。我们还查看了$ j^{\ pm} _ \ nabla $的兼容性问题,其自然封闭$ 2 $ - form $ω^{j(m,g,\ nabla)} $在$ j(m,g)$上定义。对于$(m,g)$,我们考虑使用Levi civita连接或具有给定的符号连接$ \ nabla $的伪 - riemannian歧管,无论是否定向或不定位。在所有情况下,$ j(m,g)$都是与$ g $兼容的切线空间上的一堆复杂结构,我们用$π\ colon j(m,g)\ longrightArrow m $表示束投影。在以$ m $为导向的情况下,我们要求复杂结构的方向为给定。在符合性的情况下,复杂的结构为正。

In this paper we look at the question of integrability, or not, of the two natural almost complex structures $J^{\pm}_\nabla$ defined on the twistor space $J(M,g)$ of an even-dimensional manifold $M$ with additional structures $g$ and $\nabla$ a $g$-connection. We also look at the question of the compatibility of $J^{\pm}_\nabla$ with a natural closed $2$-form $ω^{J(M,g,\nabla)}$ defined on $J(M,g)$. For $(M,g)$ we consider either a pseudo-Riemannian manifold, orientable or not, with the Levi Civita connection or a symplectic manifold with a given symplectic connection $\nabla$. In all cases $J(M,g)$ is a bundle of complex structures on the tangent spaces of $M$ compatible with $g$ and we denote by $π\colon J(M,g) \longrightarrow M$ the bundle projection. In the case $M$ is oriented we require the orientation of the complex structures to be the given one. In the symplectic case the complex structures are positive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源