论文标题

Dynamic Green在离散挠曲系统中的功能

Dynamic Green's functions in discrete flexural systems

论文作者

Madine, K. H., Colquitt, D. J.

论文摘要

该论文对由Euler-Bernoulli梁组成的离散挠曲系统的动态行为进行了分析。研究的规范对象是离散的绿色功能,可以从该功能中获得有关晶格在点载荷下载的动态响应的信息。特别关注欧拉(Euler)的平方晶格中的弯曲和扭转波之间的相互作用 - 伯努利束光束,该光束可产生一系列新颖的效果,包括极端动态各向异性,非核心,波浪引导,滤波,滤波,滤波,过滤,以及无需创建局部缺陷元素的能力,而无需其他互补的元素。分析研究得到了数值计算和有限元模拟的称赞,这两者都用于说明所预测的效果。提供了一般算法,用于构建Green的功能以及缺陷模式。该算法允许在任何所需的频率范围内调整晶格,以产生通过频带,带隙,谐振模式,波形指标和缺陷模式。

The paper presents an analysis of the dynamic behaviour of discrete flexural systems composed of Euler--Bernoulli beams. The canonical object of study is the discrete Green's function, from which information regarding the dynamic response of the lattice under point loading by forces and moments can be obtained. Special attention is devoted to the interaction between flexural and torsional waves in a square lattice of Euler--Bernoulli beams, which is shown to yield a range of novel effects, including extreme dynamic anisotropy, non-reciprocity, wave-guiding, filtering, and the ability to create localised defect modes, all without the need for additional resonant elements or interfaces. The analytical study is complimented by numerical computations and finite element simulations, both of which are used to illustrate the effects predicted. A general algorithm is provided for constructing Green's functions as well as defect modes. This algorithm allows the tuning of the lattice to produce pass bands, band gaps, resonant modes, wave-guides, and defect modes, over any desired frequency range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源