论文标题

使用校准概率模型的短期太阳辐照度预测

Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic Models

论文作者

Zelikman, Eric, Zhou, Sharon, Irvin, Jeremy, Raterink, Cooper, Sheng, Hao, Avati, Anand, Kelly, Jack, Rajagopal, Ram, Ng, Andrew Y., Gagne, David

论文摘要

推进概率太阳预测方法对于支持太阳能进入电网至关重要。在这项工作中,我们为预测太阳辐照度开发了各种最先进的概率模型。我们研究了事后校准技术的使用来确保良好的概率预测。我们使用来自Surfrad网络中七个站点的公共数据训练和评估模型,并证明,NGBOOST的最佳模型比在所有站点上的最佳基准太阳能辐照度预测模型都以次数的分辨率实现更高的性能。此外,我们表明,带有原油后校准的NGBOOST可在小时分辨率预测上获得与数值天气预测模型相当的性能。

Advancing probabilistic solar forecasting methods is essential to supporting the integration of solar energy into the electricity grid. In this work, we develop a variety of state-of-the-art probabilistic models for forecasting solar irradiance. We investigate the use of post-hoc calibration techniques for ensuring well-calibrated probabilistic predictions. We train and evaluate the models using public data from seven stations in the SURFRAD network, and demonstrate that the best model, NGBoost, achieves higher performance at an intra-hourly resolution than the best benchmark solar irradiance forecasting model across all stations. Further, we show that NGBoost with CRUDE post-hoc calibration achieves comparable performance to a numerical weather prediction model on hourly-resolution forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源