论文标题
稳健的等距非刚性结构
Robust Isometric Non-Rigid Structure-from-Motion
论文作者
论文摘要
非刚性结构从动作(NRSFM)从单眼2D图像之间建立的对应关系重建了可变形的3D对象。当前的NRSFM方法缺乏统计鲁棒性,这是应对对应错误的能力。这阻止了一种使用自动建立的对应关系,这些对应关系容易出现误差,从而强烈限制了NRSFM的范围。我们提出了三步自动管道,通过利用等轴测图来稳健地求解NRSFM。步骤1使用多个参考图像从对应关系中计算出来自对应关系的光流,步骤2将每个3D点的正常向量重建,并将它们集成在一起以最佳参考形成表面,而步骤3拒绝在其本地邻域中打破等轴测的3D点。重要的是,每个步骤旨在丢弃或标记错误的对应关系。我们的贡献包括通过经线估计对光流的鲁棒性,对局部正常重建的新快速分析解决方案及其鲁棒化以及对3D局部等距相干性的新的无标度量度。实验结果表明,我们鲁棒的NRSFM方法始终优于合成和真实数据集上的现有方法。
Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object from the correspondences established between monocular 2D images. Current NRSfM methods lack statistical robustness, which is the ability to cope with correspondence errors.This prevents one to use automatically established correspondences, which are prone to errors, thereby strongly limiting the scope of NRSfM. We propose a three-step automatic pipeline to solve NRSfM robustly by exploiting isometry. Step 1 computes the optical flow from correspondences, step 2 reconstructs each 3D point's normal vector using multiple reference images and integrates them to form surfaces with the best reference and step 3 rejects the 3D points that break isometry in their local neighborhood. Importantly, each step is designed to discard or flag erroneous correspondences. Our contributions include the robustification of optical flow by warp estimation, new fast analytic solutions to local normal reconstruction and their robustification, and a new scale-independent measure of 3D local isometric coherence. Experimental results show that our robust NRSfM method consistently outperforms existing methods on both synthetic and real datasets.