论文标题

随机强迫集合动态模式分解,以预测和分析近期系统

Stochastically forced ensemble dynamic mode decomposition for forecasting and analysis of near-periodic systems

论文作者

Dylewsky, Daniel, Barajas-Solano, David, Ma, Tong, Tartakovsky, Alexandre M., Kutz, J. Nathan

论文摘要

在几乎所有科学学科中,时间序列预测仍然是一个核心挑战问题。我们引入了一种新型的载荷预测方法,其中使用动态模式分解(DMD)在时间延迟坐标中将观察到的动力学建模为强制线性系统。这种方法的核心是一种见解,即像许多复杂现实世界系统上的许多可观察到的网格负载具有“几乎有周期性的”特征,即,在动力学中捕获常规(例如,每天或每周)重新恢复的主要峰值连续的傅立叶光谱。提出的预测方法利用了(i)回归到确定性线性模型的特征模型,该模型的特征光谱映射到这些峰上,以及(ii)同时学习随机高斯过程回归(GPR)过程来启动该系统。将我们的预测算法与不使用其他解释变量的最新预测技术进行了比较,并显示出可产生卓越的性能。此外,它对线性固有动力学的使用在可解释性和简约方面提供了许多理想的属性。使用来自电网的负载数据为测试案例提供了结果。负载预测是Power Systems工程中的基本挑战,对实时控制,定价,维护和安全决策产生了重大影响。

Time series forecasting remains a central challenge problem in almost all scientific disciplines. We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system using Dynamic Mode Decomposition (DMD) in time delay coordinates. Central to this approach is the insight that grid load, like many observables on complex real-world systems, has an "almost-periodic" character, i.e., a continuous Fourier spectrum punctuated by dominant peaks, which capture regular (e.g., daily or weekly) recurrences in the dynamics. The forecasting method presented takes advantage of this property by (i) regressing to a deterministic linear model whose eigenspectrum maps onto those peaks, and (ii) simultaneously learning a stochastic Gaussian process regression (GPR) process to actuate this system. Our forecasting algorithm is compared against state-of-the-art forecasting techniques not using additional explanatory variables and is shown to produce superior performance. Moreover, its use of linear intrinsic dynamics offers a number of desirable properties in terms of interpretability and parsimony. Results are presented for a test case using load data from an electrical grid. Load forecasting is an essential challenge in power systems engineering, with major implications for real-time control, pricing, maintenance, and security decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源