论文标题

合奏高光谱带选择用于检测葡萄叶中氮状况的选择

Ensemble Hyperspectral Band Selection for Detecting Nitrogen Status in Grape Leaves

论文作者

Omidi, Ryan, Moghimi, Ali, Pourreza, Alireza, El-Hadedy, Mohamed, Eddin, Anas Salah

论文摘要

高光谱数据的大数据大小和维度需要复杂的处理和数据分析。多光谱数据不会遭受相同的限制,但通常仅限于蓝色,绿色,红色,红色边缘和近红外带。这项研究旨在使用合奏特征选择在葡萄叶中检测的最佳光谱带,以从150多个火焰无种子表格葡萄葡萄中的超过3,000片叶子的高光谱数据上进行选择。合奏中包括六个机器学习基础排名:随机森林,套索,Selectkest,Relieff,SVM-RFE和混乱的乌鸦搜索算法(CCSA)。该管道识别出频段的不到0.45%,这是关于葡萄氮状况的最有用的信息。选定的紫罗兰色,橙色和短波红外乐队位于典型的蓝色,绿色,红色,红色边缘和近红外频带的近距离摄像机,因此,在选定的频段中以定制的多型传感器中心的定制传感器带来的葡萄中,氮遥感的遥感遥感可以改善。所提出的管道也可用于农业以外的其他领域中的特定应用多光谱传感器设计。

The large data size and dimensionality of hyperspectral data demands complex processing and data analysis. Multispectral data do not suffer the same limitations, but are normally restricted to blue, green, red, red edge, and near infrared bands. This study aimed to identify the optimal set of spectral bands for nitrogen detection in grape leaves using ensemble feature selection on hyperspectral data from over 3,000 leaves from 150 Flame Seedless table grapevines. Six machine learning base rankers were included in the ensemble: random forest, LASSO, SelectKBest, ReliefF, SVM-RFE, and chaotic crow search algorithm (CCSA). The pipeline identified less than 0.45% of the bands as most informative about grape nitrogen status. The selected violet, yellow-orange, and shortwave infrared bands lie outside of the typical blue, green, red, red edge, and near infrared bands of commercial multispectral cameras, so the potential improvement in remote sensing of nitrogen in grapevines brought forth by a customized multispectral sensor centered at the selected bands is promising and worth further investigation. The proposed pipeline may also be used for application-specific multispectral sensor design in domains other than agriculture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源