论文标题

估计Bogovski \Uı的连续性常数和正规庞加莱集成运营商

Estimation of the continuity constants for Bogovski\uı and regularized Poincaré integral operators

论文作者

Guzman, Johnny, Salgado, Abner J.

论文摘要

我们研究了常规Poincaré和Bogovski \uı的积分操作员的连续性常数的依赖性,这些操作员作用于$ \ Mathbb {r}^n $的域上定义的差异形式。特别是,当这些操作员被认为是(一个子集的)$ l^2(ω,λ^\ ell)$对$ h^1(ω,λ^{\λ^{\ ell-1})$,$ h^1(ω,λ^\ ell)$,$ h^1(ω,λ^\ ell)$时,我们特别研究了此类常数对域的某些几何特征的依赖性。对于针对球$ b $的星形形状的域$ω$,我们研究常数对比率$ $ diam(ω)/直径(b)$的依赖性。提出了有关如何制定高阶Sobolev规范估计的计划。结果扩展到某些类别的星形域工会。

We study the dependence of the continuity constants for the regularized Poincaré and Bogovski\uı integral operators acting on differential forms defined on a domain $Ω$ of $\mathbb{R}^n$. We, in particular, study the dependence of such constants on certain geometric characteristics of the domain when these operators are considered as mappings from (a subset of) $L^2(Ω,Λ^\ell)$ to $H^1(Ω,Λ^{\ell-1})$, $\ell \in \{1, \ldots, n\}$. For domains $Ω$ that are star shaped with respect to a ball $B$ we study the dependence of the constants on the ratio $diam(Ω)/diam(B)$. A program on how to develop estimates for higher order Sobolev norms is presented. The results are extended to certain classes of unions of star shaped domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源