论文标题

使用卷积神经网络检测心律不齐的心电图心跳分类

Electrocardiogram Heartbeat Classification Using Convolutional Neural Networks for the Detection of Cardiac Arrhythmia

论文作者

Khan, Mohammad Mahmudur Rahman, Siddique, Md. Abu Bakr, Sakib, Shadman, Aziz, Anas, Tanzeem, Abyaz Kader, Hossain, Ziad

论文摘要

心电图(ECG)信号的分类对识别与心脏有关的疾病的影响至关重要。这可以确保过早发现心脏病以及适当选择患者的定制治疗方法。但是,心律不齐的检测是手动执行的具有挑战性的任务。这证明了自动检测异常心脏信号的技术的必要性。因此,我们的工作基于对Physionet的MIT-BIH心律失常数据集的五类心电图心律失常信号的分类。人工神经网络(ANN)在ECG信号分类中表现出了显着成功。我们提出的模型是定制的卷积神经网络(CNN),以对ECG信号进行分类。我们的结果证明,计划中的CNN模型可以成功地将心律不齐分类为95.2%。所提出模型的平均精度和召回分别为95.2%和95.4%。该模型可有效地用于检测早期心律的不规则性。

The classification of the electrocardiogram (ECG) signal has a vital impact on identifying heart-related diseases. This can ensure the premature finding of heart disease and the proper selection of the patient's customized treatment. However, the detection of arrhythmia is a challenging task to perform manually. This justifies the necessity of a technique for automatic detection of abnormal heart signals. Therefore, our work is based on the classification of five classes of ECG arrhythmic signals from Physionet's MIT-BIH Arrhythmia Dataset. Artificial Neural Networks (ANN) have demonstrated significant success in ECG signal classification. Our proposed model is a Convolutional Neural Network (CNN) customized to categorize the ECG signals. Our result testifies that the planned CNN model can successfully categorize arrhythmia with an overall accuracy of 95.2%. The average precision and recall of the proposed model are 95.2% and 95.4%, respectively. This model can effectively be used to detect irregularities of heart rhythm at an early stage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源