论文标题

高:气候模型的高维合奏一致性测试

HECT: High-Dimensional Ensemble Consistency Testing for Climate Models

论文作者

Dalmasso, Niccolò, Vincent, Galen, Hammerling, Dorit, Lee, Ann B.

论文摘要

气候模型在理解环境和人造变化对气候的影响方面起着至关重要的作用,以帮助减轻气候风险并为政府决定提供依据。由国家大气研究中心开发的大型全球气候模型,例如社区地球系统模型(CESM),非常复杂,数百万行的代码描述了大气,土地,海洋和冰的相互作用,以及其他组件。随着CESM的开发不断进行,需要对质量持续控制模拟输出。为了能够区分代码基础的“改变气候变化”的修改与真正改变气候的物理过程或干预措施,需要有一种评估统计可重复性的原则方法,以处理可以处理空间和时间高维模拟输出的统计重复性。我们提出的工作使用概率分类器,例如基于树的算法和深层神经网络,对高维时空数据进行统计上严格的拟合优点测试。

Climate models play a crucial role in understanding the effect of environmental and man-made changes on climate to help mitigate climate risks and inform governmental decisions. Large global climate models such as the Community Earth System Model (CESM), developed by the National Center for Atmospheric Research, are very complex with millions of lines of code describing interactions of the atmosphere, land, oceans, and ice, among other components. As development of the CESM is constantly ongoing, simulation outputs need to be continuously controlled for quality. To be able to distinguish a "climate-changing" modification of the code base from a true climate-changing physical process or intervention, there needs to be a principled way of assessing statistical reproducibility that can handle both spatial and temporal high-dimensional simulation outputs. Our proposed work uses probabilistic classifiers like tree-based algorithms and deep neural networks to perform a statistically rigorous goodness-of-fit test of high-dimensional spatio-temporal data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源