论文标题
从二元脉冲星加速度测量银河平面质量密度
A measurement of the Galactic plane mass density from binary pulsar accelerations
论文作者
论文摘要
我们使用汇编的高精度脉冲星定时测量值直接测量相对于太阳系Barycenter的二元脉冲星的银河加速度。鉴于垂直加速度,我们使用泊松方程来得出OORT极限,即银河中部平面中的总体积质量密度。我们最合适的模型给出了$ 0.08^{0.05} _ { - 0.02} m _ {\ odot}/\ rm pc^{3} $的OORT限制,该限额接近最近的牛仔裤分析。鉴于McKee等人的Baryon预算会计。 (2015年),我们获得了$ -0.004^{0.05} _ { - 0.02} 〜M _ {\ odot}/\ rm pc^{3} $的局部暗物质密度,该密度略低于其他现代估计,但在我们方法当前的不确定性中都一致。虽然对OORT极限(和其他银河参数)的第一个测量值的误差栏目前比运动学估计值大几倍,但它们将来应该有所改善。我们还限制了电势的底漆,发现它与磁盘的预期一致,并且与球形光环主导的潜力不一致,这对于我们的样品适合于$ \ sim $ kpc of the the the the the the Sun。我们发现,旋转曲线的斜率不受二元脉冲星加速度的当前测量的限制。我们给出垂直加速度的拟合功能$ a_ {z} $:$ a_ {z} =-α_{1} z $; $ \ log_ {10}(α_{1}/{\ rm gyr}^{ - 2})= 3.69^{0.19} _ { - 0.12} $。通过分析银河系的交互模拟,我们发现$ da_ {z}/dz $中的大型不对称变化作为垂直高度的函数可能是子结构的签名。最后,我们讨论了结合脉冲星时的约束和高精度径向速度(RV)测量的功能,以测试PULSARS附近的视线,以测试重力理论并约束深色物质子结构。
We use compiled high-precision pulsar timing measurements to directly measure the Galactic acceleration of binary pulsars relative to the Solar System barycenter. Given the vertical accelerations, we use the Poisson equation to derive the Oort limit, i.e., the total volume mass density in the Galactic mid-plane. Our best-fitting model gives an Oort limit of $0.08^{0.05}_{-0.02} M_{\odot}/\rm pc^{3}$, which is close to estimates from recent Jeans analyses. Given the accounting of the baryon budget from McKee et al. (2015), we obtain a local dark matter density of $-0.004^{0.05}_{-0.02}~M_{\odot}/\rm pc^{3}$, which is slightly below other modern estimates but consistent within the current uncertainties of our method. While this first measurement of the Oort limit (and other Galactic parameters) has error bars that are currently several times larger than kinematical estimates, they should improve in the future. We also constrain the oblateness of the potential, finding it consistent with that expected from the disk and inconsistent with a potential dominated by a spherical halo, as is appropriate for our sample which is within a $\sim$ kpc of the Sun. We find that the slope of the rotation curve is not constrained by current measurements of binary pulsar accelerations. We give a fitting function for the vertical acceleration $a_{z}$: $a_{z} = -α_{1}z$; $\log_{10} (α_{1}/{\rm Gyr}^{-2})=3.69^{0.19}_{-0.12}$. By analyzing interacting simulations of the Milky Way, we find that large asymmetric variations in $da_{z}/dz$ as a function of vertical height may be a signature of sub-structure. We end by discussing the power of combining constraints from pulsar timing and high-precision radial velocity (RV) measurements towards lines-of-sight near pulsars, to test theories of gravity and constrain dark matter sub-structure.