论文标题
视网膜神经节细胞的临床验证的混合深度学习系统意识到青光眼进展的分级
Clinically Verified Hybrid Deep Learning System for Retinal Ganglion Cells Aware Grading of Glaucomatous Progression
论文作者
论文摘要
目的:青光眼是全球失明的第二大主要原因。通过分析视网膜神经节细胞(RGC)的变性,可以轻松监测青光眼进展。许多研究人员通过测量眼底和光学相干层析成像扫描的杯赛比率来筛选青光眼。但是,本文提出了一种新的策略,该策略将注意RGC萎缩,以筛查青光眼病理并对其严重程度进行评分。方法:所提出的框架包括一个杂种卷积网络,该网络提取视网膜神经纤维层,神经节细胞具有内部丛状层和神经节细胞复合物区域,从而允许对青光眼受试者进行定量筛查。此外,通过分析这些区域的厚度,可以客观地分级青光眼的严重程度。结果:拟议的框架对公开武装部队眼科研究所(AFIO)数据集进行了严格的测试,在该数据集中,它的F1得分达到0.9577,用于诊断青光眼,平均骰子系数为0.8697,用于提取RGC区域的0.8697,用于提取0.91111的准确性和0.9117的差异。此外,在临床上用四位专家眼科医生的标记在临床上进行了临床验证,达到统计学意义的Pearson相关系数为0.9236。结论:与最先进的溶液相比,对RGC变性的自动评估可以产生更好的青光眼筛查和分级。意义:RGC感知系统不仅筛选了青光眼,而且还可以对其严重程度进行评分,在这里我们提出了一种端到端的解决方案,该解决方案在标准化数据集上进行了彻底评估,并在临床上进行了验证,以分析胶状病理。
Objective: Glaucoma is the second leading cause of blindness worldwide. Glaucomatous progression can be easily monitored by analyzing the degeneration of retinal ganglion cells (RGCs). Many researchers have screened glaucoma by measuring cup-to-disc ratios from fundus and optical coherence tomography scans. However, this paper presents a novel strategy that pays attention to the RGC atrophy for screening glaucomatous pathologies and grading their severity. Methods: The proposed framework encompasses a hybrid convolutional network that extracts the retinal nerve fiber layer, ganglion cell with the inner plexiform layer and ganglion cell complex regions, allowing thus a quantitative screening of glaucomatous subjects. Furthermore, the severity of glaucoma in screened cases is objectively graded by analyzing the thickness of these regions. Results: The proposed framework is rigorously tested on publicly available Armed Forces Institute of Ophthalmology (AFIO) dataset, where it achieved the F1 score of 0.9577 for diagnosing glaucoma, a mean dice coefficient score of 0.8697 for extracting the RGC regions and an accuracy of 0.9117 for grading glaucomatous progression. Furthermore, the performance of the proposed framework is clinically verified with the markings of four expert ophthalmologists, achieving a statistically significant Pearson correlation coefficient of 0.9236. Conclusion: An automated assessment of RGC degeneration yields better glaucomatous screening and grading as compared to the state-of-the-art solutions. Significance: An RGC-aware system not only screens glaucoma but can also grade its severity and here we present an end-to-end solution that is thoroughly evaluated on a standardized dataset and is clinically validated for analyzing glaucomatous pathologies.