论文标题
使用卷积神经网络从光纤增强聚合物中的微观结构图像中预测机械性能
Predicting Mechanical Properties from Microstructure Images in Fiber-reinforced Polymers using Convolutional Neural Networks
论文作者
论文摘要
评估纤维增强复合材料的机械响应可能非常耗时且昂贵。机器学习(ML)技术为通过现有输入输出对训练的模型提供了更快预测的手段,并在复合研究方面取得了成功。本文探讨了由应力网络修改的完全卷积神经网络,该网络最初是针对衬线弹性材料的,并在此扩展了非线性有限元(FE)模拟,以预测纤维增强聚合物标本的分段层析成像图像中2D切片中的应力场。对网络进行了对精确微观结构的FE模拟生成的数据的培训和评估。测试结果表明,训练有素的网络仅从分段的微观结构图像中准确捕获了应力分布的特征,尤其是在纤维上。鉴于输入微结构,训练有素的模型可以在普通笔记本电脑的单个正向通道中进行几秒钟的预测,而92.5小时可以在高性能计算集群上运行完整的FE模拟。这些结果表明,使用ML技术对纤维增强复合材料进行快速结构分析有望,并暗示训练有素的模型可用于识别纤维增强聚合物中潜在损伤位点的位置。
Evaluating the mechanical response of fiber-reinforced composites can be extremely time consuming and expensive. Machine learning (ML) techniques offer a means for faster predictions via models trained on existing input-output pairs and have exhibited success in composite research. This paper explores a fully convolutional neural network modified from StressNet, which was originally for lin-ear elastic materials and extended here for a non-linear finite element (FE) simulation to predict the stress field in 2D slices of segmented tomography images of a fiber-reinforced polymer specimen. The network was trained and evaluated on data generated from the FE simulations of the exact microstructure. The testing results show that the trained network accurately captures the characteristics of the stress distribution, especially on fibers, solely from the segmented microstructure images. The trained model can make predictions within seconds in a single forward pass on an ordinary laptop, given the input microstructure, compared to 92.5 hours to run the full FE simulation on a high-performance computing cluster. These results show promise in using ML techniques to conduct fast structural analysis for fiber-reinforced composites and suggest a corollary that the trained model can be used to identify the location of potential damage sites in fiber-reinforced polymers.