论文标题
在同质空间上开处方RICCI曲率
Prescribing Ricci curvature on homogeneous spaces
论文作者
论文摘要
研究了在均匀空间m = g/k上G不变的指标中规定的RICCI曲率问题。我们专注于RICCI曲率图在本地尽可能地进行的指标。我们的主要结果是在紧凑型情况下,这种属性是通用的。我们的主要工具是我们在代数种类的时刻图中证明的Lichnerowicz Laplacian的公式。
The prescribed Ricci curvature problem in the context of G-invariant metrics on a homogeneous space M=G/K is studied. We focus on the metrics at which the Ricci curvature map is, locally, as injective and surjective as it can be. Our main result is that such property is generic in the compact case. Our main tool is a formula for the Lichnerowicz Laplacian we prove in terms of the moment map for the variety of algebras.