论文标题

神经网络MCMC采样器,可最大化提案熵

A Neural Network MCMC sampler that maximizes Proposal Entropy

论文作者

Li, Zengyi, Chen, Yubei, Sommer, Friedrich T.

论文摘要

马尔可夫链蒙特卡洛(MCMC)方法从非均衡概率分布中进行样本,并提供精确抽样的保证。但是,在连续的情况下,目标分布的不利几何形状可以极大地限制MCMC方法的效率。通过神经网络增强采样器可以提高其效率。对以前的神经网络采样器进行了培训,其目标要么没有明确鼓励探索,要么使用L2跳跃目标,该目标只能应用于结构良好的分布。因此,似乎有望最大化提案熵,以适应提议以分配任何形状。为了直接优化提案熵,我们提出了一个具有灵活且可拖动的提案分布的神经网络MCMC采样器。具体而言,我们的网络体系结构利用目标分布的梯度来生成建议。在各种抽样任务中,我们的模型比以前的神经网络MCMC技术实现了明显更高的效率。此外,采样器应用于基于收敛能量的自然图像模型的训练。自适应采样器与Langevin Dynamics Sampler相比,具有明显更高的建议熵的无偏采样器。

Markov Chain Monte Carlo (MCMC) methods sample from unnormalized probability distributions and offer guarantees of exact sampling. However, in the continuous case, unfavorable geometry of the target distribution can greatly limit the efficiency of MCMC methods. Augmenting samplers with neural networks can potentially improve their efficiency. Previous neural network based samplers were trained with objectives that either did not explicitly encourage exploration, or used a L2 jump objective which could only be applied to well structured distributions. Thus it seems promising to instead maximize the proposal entropy for adapting the proposal to distributions of any shape. To allow direct optimization of the proposal entropy, we propose a neural network MCMC sampler that has a flexible and tractable proposal distribution. Specifically, our network architecture utilizes the gradient of the target distribution for generating proposals. Our model achieves significantly higher efficiency than previous neural network MCMC techniques in a variety of sampling tasks. Further, the sampler is applied on training of a convergent energy-based model of natural images. The adaptive sampler achieves unbiased sampling with significantly higher proposal entropy than Langevin dynamics sampler.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源