论文标题
晶格正规化和纠缠模型的纠缠结构
Lattice regularisation and entanglement structure of the Gross-Neveu model
论文作者
论文摘要
我们构建了$ n $ -Flavour Gross-Neveu模型的汉密尔顿晶格正则化,该模型显然尊重整个$ \ Mathsf {O}(2n)$对称性,从而阻止了对量子场理论的任何不必要的边际扰动的外观。在这个晶格模型的背景下,动态质量产生与Coleman-Mermin-Wagner和Lieb-Schultz-Mattis定理密切相关。特别是,该模型可以解释为位于琐碎和对称保护拓扑(SPT)相之间的一阶相变点,这解释了基本扭结激发的退化。我们表明,我们的哈密顿模型可以在较大的$ n $限制中进行分析解决,从而为大规模差距产生正确的表达。此外,我们对$ n = 2 $执行了广泛的数值矩阵产品状态模拟,从而恢复了紧急的Lorentz对称性,并在连续限制中恢复了适当的非扰动质量间隙缩放。最后,我们的模拟还揭示了连续限制如何在纠缠频谱中表现出来。正如顺式场理论所期望的那样,我们发现了两个保形塔,一个塔由$ \ mathsf {o}(4)$的线性表示跨越,对应于琐碎的阶段,另一个由投影(即旋转器)表示,对应于SPT阶段。
We construct a Hamiltonian lattice regularisation of the $N$-flavour Gross-Neveu model that manifestly respects the full $\mathsf{O}(2N)$ symmetry, preventing the appearance of any unwanted marginal perturbations to the quantum field theory. In the context of this lattice model, the dynamical mass generation is intimately related to the Coleman-Mermin-Wagner and Lieb-Schultz-Mattis theorem. In particular, the model can be interpreted as lying at the first order phase transition line between a trivial and symmetry-protected topological (SPT) phase, which explains the degeneracy of the elementary kink excitations. We show that our Hamiltonian model can be solved analytically in the large $N$ limit, producing the correct expression for the mass gap. Furthermore, we perform extensive numerical matrix product state simulations for $N=2$, thereby recovering the emergent Lorentz symmetry and the proper non-perturbative mass gap scaling in the continuum limit. Finally, our simulations also reveal how the continuum limit manifests itself in the entanglement spectrum. As expected from conformal field theory we find two conformal towers, one tower spanned by the linear representations of $\mathsf{O}(4)$, corresponding to the trivial phase, and the other by the projective (i.e. spinor) representations, corresponding to the SPT phase.