论文标题

通过随机化的影响最大化的公平性

Fairness in Influence Maximization through Randomization

论文作者

Becker, Ruben, D'Angelo, Gianlorenzo, Ghobadi, Sajjad, Gilbert, Hugo

论文摘要

各个领域的研究人员都使用了最大化范式的影响,以研究信息在社交网络中的传播方式。尽管以前的关注主要是在效率上,但最近在此范围内考虑了公平问题。在本文中,我们建议将随机化作为实现公平的均值。类似于Fish等人的先前作品。 (www '19)和Tsang等。 (ijcai '19),我们研究(组)公平的最大值标准。但是,与他们的工作相反,我们以一种方式对问题进行建模,以至于选择种子集时,概率策略是可能的,而不仅仅是确定性的。我们介绍了这个概率问题的两个不同变体,其中一个需要对节点的概率策略(基于节点的问题),而第二个则需要对一组节点(基于集合问题)的概率策略进行概率策略。虽然涉及最大化标准的原始确定性问题已被证明是不合适的,但有趣的是,我们表明,这两种概率变体都允许达到1-1/e的恒定多重因子加上添加性的任意小误差,这是由于信息扩散所致。对于一项实验研究,我们为问题提供了乘法常规的实现,并将实现的公平价值与现有方法进行比较。也许是非很不可思议的,我们表明,计算出的概率策略的前值明显大于先前方法的(前柱)公平值。这表明通过随机进行公平性是一条值得遵循的途径。有趣的是,更令人惊讶的是,我们观察到,即使是由我们的例行程序计算得出的前柱公平值,在先前方法在大多数测试的实例上所获得的公平性都占主导地位。

The influence maximization paradigm has been used by researchers in various fields in order to study how information spreads in social networks. While previously the attention was mostly on efficiency, more recently fairness issues have been taken into account in this scope. In this paper, we propose to use randomization as a mean for achieving fairness. Similar to previous works like Fish et al. (WWW '19) and Tsang et al. (IJCAI '19), we study the maximin criterion for (group) fairness. In contrast to their work however, we model the problem in such a way that, when choosing the seed sets, probabilistic strategies are possible rather than only deterministic ones. We introduce two different variants of this probabilistic problem, one that entails probabilistic strategies over nodes (node-based problem) and a second one that entails probabilistic strategies over sets of nodes (set-based problem). While the original deterministic problem involving the maximin criterion has been shown to be inapproximable, interestingly, we show that both probabilistic variants permit approximation algorithms that achieve a constant multiplicative factor of 1-1/e plus an additive arbitrarily small error that is due to the simulation of the information spread. For an experimental study, we provide implementations of multiplicative-weight routines for both problems and compare the achieved fairness values to existing methods. Maybe non-surprisingly, we show that the ex-ante values of the computed probabilistic strategies are significantly larger than the (ex-post) fairness values of previous methods. This indicates that studying fairness via randomization is a worthwhile path to follow. Interestingly and maybe more surprisingly, we observe that even the ex-post fairness values computed by our routines, dominate over the fairness achieved by previous methods on most of the instances tested.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源