论文标题
在总体相对论中,新的质量不平等方法的质量不平等方法
New spinorial approach to mass inequalities for black holes in general relativity
论文作者
论文摘要
提出了一种新的旋转策略,用于构建涉及一般相对论中黑洞系统的Arnowitt-Deser-Misner(ADM)质量的几何不平等现象(ADM)。该方法基于价1 Weyl Spinor的二阶椭圆方程(近似扭曲器方程)。这比基于sen-witter-dirac方程的几何不等式的其他旋转方法具有优势,该方法允许为旋转器的两个组件指定边界条件。对边界数据的更大控制可能会引起涉及质量的新几何不等式。特别是,质量表明,质量是从下面的界限,在边缘外部捕获的表面(MOT)上取决于自由指定的价1旋转器。从这个主要不平等的情况下,通过以适当的方式选择自由数据,就可以根据MOT的内部扩展获得质量的新质量界限。该分析利用了$ 1+1+2 $的旋转方程分解的新形式主义。
A new spinorial strategy for the construction of geometric inequalities involving the Arnowitt-Deser-Misner (ADM) mass of black hole systems in general relativity is presented. This approach is based on a second order elliptic equation (the approximate twistor equation) for a valence 1 Weyl spinor. This has the advantage over other spinorial approaches to the construction of geometric inequalities based on the Sen-Witten-Dirac equation that it allows to specify boundary conditions for the two components of the spinor. This greater control on the boundary data has the potential of giving rise to new geometric inequalities involving the mass. In particular, it is shown that the mass is bounded from below by an integral functional over a marginally outer trapped surface (MOTS) which depends on a freely specifiable valence 1 spinor. From this main inequality, by choosing the free data in an appropriate way, one obtains a new nontrivial bounds of the mass in terms of the inner expansion of the MOTS. The analysis makes use of a new formalism for the $1+1+2$ decomposition of spinorial equations.