论文标题

周期性的利比特不平等

The periodic Lieb-Thirring inequality

论文作者

Frank, Rupert L., Gontier, David, Lewin, Mathieu

论文摘要

我们讨论了周期系统的Lieb-Thrir-Thrir-Thrir-Thririte不平等,该不平等与有限系统的原始不平等具有相同的最佳常数。这使我们能够对其最佳常数的价值提出一个新的猜想。为了证明周期性状态的重要性,我们证明了特殊指数上的一维动物不平等$γ= 3/2 $允许一个单参数定期优化者家族,在单一结合状态和统一潜力之间插值。最后,我们在2D中提供数值模拟,以支持我们的猜想,即优化器可能是周期性的。

We discuss the Lieb-Thirring inequality for periodic systems, which has the same optimal constant as the original inequality for finite systems. This allows us to formulate a new conjecture about the value of its best constant. To demonstrate the importance of periodic states, we prove that the 1D Lieb-Thirring inequality at the special exponent $γ=3/2$ admits a one-parameter family of periodic optimizers, interpolating between the one-bound state and the uniform potential. Finally, we provide numerical simulations in 2D which support our conjecture that optimizers could be periodic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源