论文标题

学习有效的物理定律,用于通过拉格朗日深度学习产生宇宙流体动力学

Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian Deep Learning

论文作者

Dai, Biwei, Seljak, Uros

论文摘要

生成模型的目的是学习数据之间的复杂关系以创建新的模拟数据,但是当前方法在很高的维度中失败。当真实数据生成过程基于物理过程时,这些施加的对称和约束,并且可以通过学习对基础物理的有效描述来创建生成模型,从而使生成模型可以扩展到很高的维度。在这项工作中,我们为此目的提出了拉格朗日深度学习(LDL),将其应用于学习宇宙学水动力学模拟的输出。该模型使用描述可观察到有效物理定律的可观察物的粒子位移层。这些位移被建模为有效电位的梯度,该梯度明确满足了翻译和旋转不变性。学到的参数的总数仅为第10顺序,可以将其视为有效理论参数。我们将N体求解器FASTPM与LDL相结合,并将其应用于从暗物质到恒星图,气体密度和温度的广泛宇宙产量。 LDL的计算成本比完整的流体动力学模拟低四个数量级,但它以相同的分辨率优于它。我们仅通过从初始条件到最终输出的10层订单实现这一目标,与具有数千个时间步长的典型宇宙学模拟相反。这打开了在此框架内完全分析宇宙学观察的可能性,而无需大型的深色模拟。

The goal of generative models is to learn the intricate relations between the data to create new simulated data, but current approaches fail in very high dimensions. When the true data generating process is based on physical processes these impose symmetries and constraints, and the generative model can be created by learning an effective description of the underlying physics, which enables scaling of the generative model to very high dimensions. In this work we propose Lagrangian Deep Learning (LDL) for this purpose, applying it to learn outputs of cosmological hydrodynamical simulations. The model uses layers of Lagrangian displacements of particles describing the observables to learn the effective physical laws. The displacements are modeled as the gradient of an effective potential, which explicitly satisfies the translational and rotational invariance. The total number of learned parameters is only of order 10, and they can be viewed as effective theory parameters. We combine N-body solver FastPM with LDL and apply them to a wide range of cosmological outputs, from the dark matter to the stellar maps, gas density and temperature. The computational cost of LDL is nearly four orders of magnitude lower than the full hydrodynamical simulations, yet it outperforms it at the same resolution. We achieve this with only of order 10 layers from the initial conditions to the final output, in contrast to typical cosmological simulations with thousands of time steps. This opens up the possibility of analyzing cosmological observations entirely within this framework, without the need for large dark-matter simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源