论文标题
$ q $ - 线性分辨率的边缘环
Edge rings with $q$-linear resolutions
论文作者
论文摘要
在本文中,我们对连接的简单图进行了完整的分类,其边缘环具有$ Q $ - 线性分辨率,$ q \ geq 2 $。特别是,我们表明,有限连接的简单图的边缘带有$ q $ - 线性分辨率,其中$ q \ geq 3 $是一个高表面,由hibi,matsuda和tsuchiya猜想。
In the present paper, we give a complete classification of connected simple graphs whose edge rings have a $q$-linear resolution with $q \geq 2$. In particular, we show that the edge ring of a finite connected simple graph with a $q$-linear resolution, where $q \geq 3$, is a hypersurface, which was conjectured by Hibi, Matsuda, and Tsuchiya.