论文标题
使用图算法的量子化学片段化方法的蛋白质进行系统分配
Systematic partitioning of proteins for quantum-chemical fragmentation methods using graph algorithms
论文作者
论文摘要
量子化学片段化方法为大蛋白质的治疗提供了一种有效的方法,特别是如果寻求嵌入式发色团的局部靶标数量,例如蛋白质 - 配体相互作用能,酶促反应能或光谱特性。但是,这种局部目标数量可实现的准确性错综复杂地取决于将蛋白划分为较小的片段。尽管使用具有固定尺寸的片段的常见幼稚方法被广泛使用,但在改变片段大小时可能会导致较大且不可预测的错误。在这里,我们提出了一个系统的分区方案,该方案旨在最大程度地减少给定最大片段大小的局部目标数量的碎片误差。 为此,我们构建了蛋白质的加权图表示,其中氨基酸构成节点。这些节点通过对切割此边缘时预期的碎片误差的估计值加权的边缘连接。这使我们可以采用计算机科学提供的图形分区来确定蛋白质的近乎最佳分区。我们将该方案应用于六个蛋白质的测试组,该蛋白质代表了量子化学片段化方法的各种典型应用,并使用氢帽的简化分子分级分馏(MFCC)方法。我们表明,基于图的方案在幼稚的方法上始终改善。
Quantum-chemical fragmentation methods offer an efficient approach for the treatment of large proteins, in particular if local target quantities such as protein--ligand interaction energies, enzymatic reaction energies, or spectroscopic properties of embedded chromophores are sought. However, the accuracy that is achievable for such local target quantities intricately depends on how the protein is partitioned into smaller fragments. While the commonly employed naïve approach of using fragments with a fixed size is widely used, it can result in large and unpredictable errors when varying the fragment size. Here, we present a systematic partitioning scheme that aims at minimizing the fragmentation error of a local target quantity for a given maximum fragment size. To this end, we construct a weighted graph representation of the protein, in which the amino acids constitute the nodes. These nodes are connected by edges weighted with an estimate for the fragmentation error that is expected when cutting this edge. This allows us to employ graph partitioning algorithms provided by computer science to determine near-optimal partitions of the protein. We apply this scheme to a test set of six proteins representing various prototypical applications of quantum-chemical fragmentation methods using a simplified molecular fractionation with conjugate caps (MFCC) approach with hydrogen caps. We show that our graph-based scheme consistently improves upon the naïve approach.