论文标题

高维中的内核回归:超越双重下降的精制分析

Kernel regression in high dimensions: Refined analysis beyond double descent

论文作者

Liu, Fanghui, Liao, Zhenyu, Suykens, Johan A. K.

论文摘要

在本文中,根据训练数据N的数量是否超过特征维度d,我们提供了高维内核脊回归的概括性能的精确表征。通过建立预期过量风险的偏置变异分解,我们表明,尽管偏差(几乎)与d无关,而单调的偏差随着n而单调降低,但在不同的正则化方案下,偏差依赖于n,d,并且可以单峰或单调降低。我们的精致分析超出了双重下降理论,这表明,根据数据本征核和正则化水平,内核回归风险曲线可以是n的双衰变,钟形或单调的函数。进行合成和真实数据的实验以支持我们的理论发现。

In this paper, we provide a precise characterization of generalization properties of high dimensional kernel ridge regression across the under- and over-parameterized regimes, depending on whether the number of training data n exceeds the feature dimension d. By establishing a bias-variance decomposition of the expected excess risk, we show that, while the bias is (almost) independent of d and monotonically decreases with n, the variance depends on n, d and can be unimodal or monotonically decreasing under different regularization schemes. Our refined analysis goes beyond the double descent theory by showing that, depending on the data eigen-profile and the level of regularization, the kernel regression risk curve can be a double-descent-like, bell-shaped, or monotonic function of n. Experiments on synthetic and real data are conducted to support our theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源