论文标题

$ \ mathbb t $的非线性schrödinger方程的一阶傅立叶集成符,而不会丧失规律性

A first-order Fourier integrator for the nonlinear Schrödinger equation on $\mathbb T$ without loss of regularity

论文作者

Wu, Yifei, Yao, Fangyan

论文摘要

在本文中,我们提出了一个一阶傅立叶积分器,用于在一个维度上求解立方非线性schrödinger方程。该方案是显式的,可以使用快速傅立叶变换实现。通过严格的分析,我们证明了新方案为任何属于$ h^γ$的初始数据(对于任何$γ> \ frac32 $)提供了$ h^γ$的第一阶准确度。也就是说,在某个固定的时间$ t $之前,存在一些常数$ c = c(\ | U \ \ | _ {l^\ infty([0,t]; h^γ)})> 0 $,因此$ \ | U^n-U(t_n) $ t_n =nτ$的解决方案。此外,数值解决方案的质量$ m(u^n)$验证$$ \ left | m(u^n)-m(u_0)\ right | \ lecτ^5。尤其是$$,我们的方案剂量不需要任何额外的衍生品来用于一阶收敛,而数值解决方案遵守了几乎群众保护法。 Furthermore, if $u_0\in H^1(\mathbb T)$, we rigorously prove that $$ \|u^n-u(t_n)\|_{H^1(\mathbb T)}\le Cτ^{\frac12-}, $$ where $C= C(\|u_0\|_{H^1(\mathbb t)})> 0 $。

In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrödinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first order accuracy in $H^γ$ for any initial data belonging to $H^γ$, for any $γ>\frac32$. That is, up to some fixed time $T$, there exists some constant $C=C(\|u\|_{L^\infty([0,T]; H^γ)})>0$, such that $$ \|u^n-u(t_n)\|_{H^γ(\mathbb T)}\le C τ, $$ where $u^n$ denotes the numerical solution at $t_n=nτ$. Moreover, the mass of the numerical solution $M(u^n)$ verifies $$ \left|M(u^n)-M(u_0)\right|\le Cτ^5. $$ In particular, our scheme dose not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if $u_0\in H^1(\mathbb T)$, we rigorously prove that $$ \|u^n-u(t_n)\|_{H^1(\mathbb T)}\le Cτ^{\frac12-}, $$ where $C= C(\|u_0\|_{H^1(\mathbb T)})>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源