论文标题
转换与虚拟助手说话的消息的观点
Converting the Point of View of Messages Spoken to Virtual Assistants
论文作者
论文摘要
虚拟助手有时可能是很字面的。如果用户说“告诉鲍勃我爱他”,大多数虚拟助手都会提取“我爱他”的信息,并将其发送给用户的联系人鲍勃,而不是将信息正确转换为“我爱你”。我们设计了一个系统,以允许虚拟助手从一个用户获取语音消息,转换消息的观点,然后将结果传递给目标用户。我们开发了一个基于规则的模型,该模型集成了线性文本分类模型,言论部分标签以及与基于规则的转换方法的选区解析。我们还研究了包括LSTMS,CeryNet和T5在内的神经机器翻译(NMT)方法。我们探索了5个指标来自动评估自然和忠诚,我们选择使用单独训练的语言模型(GPT)来使用Bleu Plus流星来实现忠诚和相对困惑。 Transformer-copynet和T5在忠诚度量指标上的表现类似,T5达到了轻微的边缘,BLEU得分为63.8,流星得分为83.0。库网是最自然的,相对困惑为1.59。库存的参数也比T5少37倍。我们已公开发布了我们的数据集,该数据集由46,565个众筹样本组成。
Virtual Assistants can be quite literal at times. If the user says "tell Bob I love him," most virtual assistants will extract the message "I love him" and send it to the user's contact named Bob, rather than properly converting the message to "I love you." We designed a system to allow virtual assistants to take a voice message from one user, convert the point of view of the message, and then deliver the result to its target user. We developed a rule-based model, which integrates a linear text classification model, part-of-speech tagging, and constituency parsing with rule-based transformation methods. We also investigated Neural Machine Translation (NMT) approaches, including LSTMs, CopyNet, and T5. We explored 5 metrics to gauge both naturalness and faithfulness automatically, and we chose to use BLEU plus METEOR for faithfulness and relative perplexity using a separately trained language model (GPT) for naturalness. Transformer-Copynet and T5 performed similarly on faithfulness metrics, with T5 achieving slight edge, a BLEU score of 63.8 and a METEOR score of 83.0. CopyNet was the most natural, with a relative perplexity of 1.59. CopyNet also has 37 times fewer parameters than T5. We have publicly released our dataset, which is composed of 46,565 crowd-sourced samples.