论文标题

熊猫?不,这是一个懒惰:对自适应多exiT神经网络推断的攻击减速

A Panda? No, It's a Sloth: Slowdown Attacks on Adaptive Multi-Exit Neural Network Inference

论文作者

Hong, Sanghyun, Kaya, Yiğitcan, Modoranu, Ionuţ-Vlad, Dumitraş, Tudor

论文摘要

最新的深神经网络(DNN)计算需求的增加,加上大多数输入样本仅需要简单模型的观察结果引起了人们对$输入$ - $自适应$ - 自适应$ MULTI-EXIT架构的兴趣,例如MSDNETS或浅水网络。这些体系结构可以更快地推断,并可以将DNN带到低功率设备,例如在物联网(IoT)中。但是,尚不清楚这种方法提供的计算节省是否可抵御对抗压力。特别是,对手可能会通过增加其平均推理时间$ $ - $ nible $ - $ - $ - $ - $ - 服务$ $ - $ - $ $服务$攻击的威胁来旨在减慢自适应DNN。在本文中,我们通过在两个流行的图像分类基准(CIFAR-10和TINY IMAGENET)上对三个通用的多EXIT DNN(基于VGG16,Mobilenet和Resnet56)进行实验(基于VGG16,Mobilenet和Resnet56)和自定义的多exit体系结构,对这种威胁进行系统评估。为此,我们表明可以修改对抗性示例进行示例制作技术,以引起放缓,我们提出了一个指标,以比较它们对不同体系结构的影响。我们表明,放缓的攻击将多EXIT DNN的功效降低了90-100%,并且在典型的物联网部署中将潜伏期扩大1.5-5 $ \ times $。我们还表明,可以制造通用,可重复使用的扰动,并且攻击在现实的黑盒场景中有效,在攻击者对受害者的了解有限。最后,我们表明,对抗训练为防止放缓提供了有限的保护。这些结果表明,需要进一步的研究来捍卫多种外观体系结构抵抗这种新兴威胁。我们的代码可在https://github.com/sanghyun-hong/deepsloth上找到。

Recent increases in the computational demands of deep neural networks (DNNs), combined with the observation that most input samples require only simple models, have sparked interest in $input$-$adaptive$ multi-exit architectures, such as MSDNets or Shallow-Deep Networks. These architectures enable faster inferences and could bring DNNs to low-power devices, e.g., in the Internet of Things (IoT). However, it is unknown if the computational savings provided by this approach are robust against adversarial pressure. In particular, an adversary may aim to slowdown adaptive DNNs by increasing their average inference time$-$a threat analogous to the $denial$-$of$-$service$ attacks from the Internet. In this paper, we conduct a systematic evaluation of this threat by experimenting with three generic multi-exit DNNs (based on VGG16, MobileNet, and ResNet56) and a custom multi-exit architecture, on two popular image classification benchmarks (CIFAR-10 and Tiny ImageNet). To this end, we show that adversarial example-crafting techniques can be modified to cause slowdown, and we propose a metric for comparing their impact on different architectures. We show that a slowdown attack reduces the efficacy of multi-exit DNNs by 90-100%, and it amplifies the latency by 1.5-5$\times$ in a typical IoT deployment. We also show that it is possible to craft universal, reusable perturbations and that the attack can be effective in realistic black-box scenarios, where the attacker has limited knowledge about the victim. Finally, we show that adversarial training provides limited protection against slowdowns. These results suggest that further research is needed for defending multi-exit architectures against this emerging threat. Our code is available at https://github.com/sanghyun-hong/deepsloth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源