论文标题

学习使用惯性导航系统(INS)在具有挑战性的环境中定位自动化车辆

Learning to Localise Automated Vehicles in Challenging Environments using Inertial Navigation Systems (INS)

论文作者

Onyekpe, Uche, Palade, Vasile, Kanarachos, Stratis

论文摘要

本文提出了一种基于人工神经网络的算法,以提高惯性导航系统(INS)/全球导航卫星系统(GNSS)在缺乏GNSS信号时集成导航的准确性。在GNSS信号损失期间,可用于连续定位自动驾驶汽车的INS周围的城市峡谷,桥梁,隧道和树木,在陀螺仪的整合过程中随着时间的推移和加速度计到位移的双重整合过程中,无限的指数误差会随着时间的流逝而陷入困境。更重要的是,误差漂移的特征是取决于时间的模式。输入延迟神经网络(IDNN)具有随着时间的流逝而学习错误漂移的能力[1],并且具有比复发性神经网络(RNN),长期短期内存和封闭式复发单元网络更有效的计算质量。此外,发表的文献专注于不考虑复杂的驾驶场景的旅行路线,因此,我们在本文中调查了拟议算法在挑战性方案上的性能,例如硬制动器,艰难的回旋,锋利的转弯,连续的转弯,左转和右转弯以及跨众多测试序列的车辆加速的快速变化。获得的结果表明,基于神经网络的方法能够在INS位移估计中提供多达89.55%的改善,而INS取向率估计值为93.35%。

An algorithm based on Artificial Neural Networks is proposed in this paper to improve the accuracy of Inertial Navigation System (INS)/ Global Navigation Satellite System (GNSS) integrated navigation during the absence of GNSS signals. The INS which can be used to continuously position autonomous vehicles during GNSS signal losses around urban canyons, bridges, tunnels and trees, suffers from unbounded exponential error drifts cascaded over time during the integration of the gyroscope and double integration of the accelerometer to displacement. More so, the error drift is characterised by a pattern dependent on time. The Input Delay Neural Network (IDNN) has the ability to learn the error drift over time [1] and possesses the quality of being more computationally efficient than the Recurrent Neural Network (RNN), Long Short-Term Memory, and the Gated Recurrent Unit Network. Furthermore published literatures focus on travel routes which do not take complex driving scenarios into consideration, we therefore investigate in this paper the performance of the proposed algorithm on challenging scenarios, such as hard brake, roundabouts, sharp cornering, successive left and right turns and quick changes in vehicular acceleration across numerous test sequences. The results obtained show that the Neural Network-based approaches are able to provide up to 89.55 % improvement on the INS displacement estimation and 93.35 % on the INS orientation rate estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源