论文标题

量子代码综合征统计数据的最佳噪声估计

Optimal noise estimation from syndrome statistics of quantum codes

论文作者

Wagner, Thomas, Kampermann, Hermann, Bruß, Dagmar, Kliesch, Martin

论文摘要

当噪声足够弱时,量子误差校正允许在量子计算中积极纠正误差。为了使此错误校正竞争信息有关特定噪声。传统上,通过在操作前对设备进行基准测试来获得此信息。我们解决了只有从解码过程中完成的测量值才能学到的问题。提出了噪声模型的这种估计,用于表面代码,利用其特殊结构,并在其他代码的低误差率下。但是,到目前为止,在哪些一般条件下尚不清楚噪声模型可以从综合征测量值中估算。在这项工作中,我们得出了错误率可识别性的一般条件。对于一般稳定器代码,我们在假设速率足够小的假设下证明了可识别性。没有这个假设,我们证明了完美代码的结果。最后,我们提出了一种使用线性运行时进行串联代码的实用估计方法。我们证明,它表现优于其他最近提出的方法,并且在达到Cramér-Rao结合的意义上,估计是最佳的。我们的方法为操作过程中误差校正量子设备的实际校准铺平了道路。

Quantum error correction allows to actively correct errors occurring in a quantum computation when the noise is weak enough. To make this error correction competitive information about the specific noise is required. Traditionally, this information is obtained by benchmarking the device before operation. We address the question of what can be learned from only the measurements done during decoding. Such estimation of noise models was proposed for surface codes, exploiting their special structure, and in the limit of low error rates also for other codes. However, so far it has been unclear under what general conditions noise models can be estimated from the syndrome measurements. In this work, we derive a general condition for identifiability of the error rates. For general stabilizer codes, we prove identifiability under the assumption that the rates are small enough. Without this assumption we prove a result for perfect codes. Finally, we propose a practical estimation method with linear runtime for concatenated codes. We demonstrate that it outperforms other recently proposed methods and that the estimation is optimal in the sense that it reaches the Cramér-Rao Bound. Our method paves the way for practical calibration of error corrected quantum devices during operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源