论文标题

特征特拉:从3D日食映射中识别光谱的框架

Eigenspectra: A Framework for Identifying Spectra from 3D Eclipse Mapping

论文作者

Mansfield, Megan, Schlawin, Everett, Lustig-Yaeger, Jacob, Adams, Arthur D., Rauscher, Emily, Arcangeli, Jacob, Feng, Y. Katherina, Gupta, Prashansa, Keating, Dylan, Stevenson, Kevin B., Beatty, Thomas G.

论文摘要

行星大气是固有的3D物体,可以在纬度,经度和高度上具有很强的梯度。次要日食映射是映射大气的3D分布的有力方法,但是在存在光子和仪器噪声的情况下,数据可能具有较大的相关性和错误。我们开发了一种通过识别少量的主要光谱来使它们更容易通过大气检索来使其更容易拖拉,以减轻日食图的大量不确定性。我们使用特征库方法从光谱次级eclipse光曲线中推断行星的多波长图。然后,我们将聚类算法应用于行星图,以识别具有相似新兴光谱的几个区域。我们将相似的光谱结合在一起,为行星图上的每个不同区域构建一个“特征性”。我们证明了如何使用这种方法与詹姆斯·韦伯(James Webb)空间望远镜(JWST)观察到的热木星中的冷区和/或具有不同化学成分的区域的热点。我们发现,我们的方法难以识别出突然不连续性的地图中尖锐的边缘,但通常可以用作更具身体动机的建模方法来确定地球上观察到的主要特征的第一步。

Planetary atmospheres are inherently 3D objects that can have strong gradients in latitude, longitude, and altitude. Secondary eclipse mapping is a powerful way to map the 3D distribution of the atmosphere, but the data can have large correlations and errors in the presence of photon and instrument noise. We develop a technique to mitigate the large uncertainties of eclipse maps by identifying a small number of dominant spectra to make them more tractable for individual analysis via atmospheric retrieval. We use the eigencurves method to infer a multi-wavelength map of a planet from spectroscopic secondary eclipse light curves. We then apply a clustering algorithm to the planet map to identify several regions with similar emergent spectra. We combine the similar spectra together to construct an "eigenspectrum" for each distinct region on the planetary map. We demonstrate how this approach could be used to isolate hot from cold regions and/or regions with different chemical compositions in observations of hot Jupiters with the James Webb Space Telescope (JWST). We find that our method struggles to identify sharp edges in maps with sudden discontinuities, but generally can be used as a first step before a more physically motivated modeling approach to determine the primary features observed on the planet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源