论文标题
帕累托探测:将准确性折叠以获得复杂性
Pareto Probing: Trading Off Accuracy for Complexity
论文作者
论文摘要
如何以既有原则又有用的方式探究语言结构的上下文形式的问题,最近在NLP文献中引起了极大的关注。在我们对讨论的贡献中,我们主张了一个探针指标,以反映探针复杂性和绩效之间的基本权衡:帕累托超卷。为了衡量复杂性,我们提出了许多参数和非参数指标。我们使用Pareto Hypervolume作为评估度量的实验表明,探针通常不符合我们的期望 - 例如,为什么非上下文的FastText表示应该与上下文BERT表示更形式地句法信息?这些结果表明,常见的,简单的探测任务,例如言论的标签和依赖性弧标记,不足以评估在上下文单词表示中编码的语言结构。这使我们提出完全依赖解析作为探索任务。为了支持我们的建议,即需要更困难的探测任务是必要的,我们的依赖性解析的实验揭示了上下文和非上下文表示之间的句法知识的差距。
The question of how to probe contextual word representations for linguistic structure in a way that is both principled and useful has seen significant attention recently in the NLP literature. In our contribution to this discussion, we argue for a probe metric that reflects the fundamental trade-off between probe complexity and performance: the Pareto hypervolume. To measure complexity, we present a number of parametric and non-parametric metrics. Our experiments using Pareto hypervolume as an evaluation metric show that probes often do not conform to our expectations -- e.g., why should the non-contextual fastText representations encode more morpho-syntactic information than the contextual BERT representations? These results suggest that common, simplistic probing tasks, such as part-of-speech labeling and dependency arc labeling, are inadequate to evaluate the linguistic structure encoded in contextual word representations. This leads us to propose full dependency parsing as a probing task. In support of our suggestion that harder probing tasks are necessary, our experiments with dependency parsing reveal a wide gap in syntactic knowledge between contextual and non-contextual representations.