论文标题
基于单阶段的恒星线圈设计:近轴准对称的优化
Single-stage gradient-based stellarator coil design: Optimization for near-axis quasi-symmetry
论文作者
论文摘要
我们提出了一个新的线圈设计范式,用于恒星中的磁性限制。我们的方法直接优化了线圈形状和线圈电流,以产生带有目标旋转磁盘上的目标旋转变换的真空准对称磁场。这种方法与传统的两阶段方法不同,在传统的两阶段方法中,首先找到具有理想物理特性的磁性构型,然后盘绕以大致意识到这种磁性构型的设计。提出的单阶段方法使我们能够在限制和工程要求之间找到妥协,即找到具有良好限制属性的易于建造的线圈。使用向前和伴随的敏感性,我们得出了物体中物理量的导数,该物理量受到非线性周期性微分方程的约束。在两个数值示例中,我们比较了不同的基于梯度的下降算法,并发现通过准牛顿方法合并近似二阶导数信息对于收敛至关重要。我们还探索了最小化器附近的优化景观,并找到了许多目标,其中大部分是平坦的,表明找到了足够的自由,可以找到简单易于建造的线圈。
We present a new coil design paradigm for magnetic confinement in stellarators. Our approach directly optimizes coil shapes and coil currents to produce a vacuum quasi-symmetric magnetic field with a target rotational transform on the magnetic axis. This approach differs from the traditional two-stage approach in which first a magnetic configuration with desirable physics properties is found, and then coils to approximately realize this magnetic configuration are designed. The proposed single-stage approach allows us to find a compromise between confinement and engineering requirements, i.e., find easy-to-build coils with good confinement properties. Using forward and adjoint sensitivities, we derive derivatives of the physical quantities in the objective, which is constrained by a nonlinear periodic differential equation. In two numerical examples, we compare different gradient-based descent algorithms and find that incorporating approximate second-order derivative information through a quasi-Newton method is crucial for convergence. We also explore the optimization landscape in the neighborhood of a minimizer and find many directions in which the objective is mostly flat, indicating ample freedom to find simple and thus easy-to-build coils.