论文标题

Metabox+:一种基于优先级图的新的基于区域的主动学习方法,用于语义分割

MetaBox+: A new Region Based Active Learning Method for Semantic Segmentation using Priority Maps

论文作者

Colling, Pascal, Roese-Koerner, Lutz, Gottschalk, Hanno, Rottmann, Matthias

论文摘要

我们提出了一种基于区域的新型主动学习方法,用于语义图像分割,称为Metabox+。为了获取,我们训练一个元回归模型,以估计未标记图像的每个预测段的联合(IOU)的段相交。这可以理解为对细分市场预测质量的估计。查询区域应该最小化竞争目标,即,低预测值 /分割质量和低估计的注释成本。为了估算后者,我们提出了一种简单但实用的注释成本估算方法。我们将我们的方法与基于熵的方法进行比较,在该方法中,我们将熵视为预测的不确定性。对结果的比较和分析提供了对方法的注释成本以及稳健性和方法的见解。在城市景观数据集上使用两个不同网络进行的数值实验清楚地表明,与随机获取相比,注释努力的减少。值得注意的是,与使用完整数据集训练时,我们使用Metabox+达到了平均值(MIOU)的95%,分别为两个网络的注释工作分别仅为10.47% / 32.01%。

We present a novel region based active learning method for semantic image segmentation, called MetaBox+. For acquisition, we train a meta regression model to estimate the segment-wise Intersection over Union (IoU) of each predicted segment of unlabeled images. This can be understood as an estimation of segment-wise prediction quality. Queried regions are supposed to minimize to competing targets, i.e., low predicted IoU values / segmentation quality and low estimated annotation costs. For estimating the latter we propose a simple but practical method for annotation cost estimation. We compare our method to entropy based methods, where we consider the entropy as uncertainty of the prediction. The comparison and analysis of the results provide insights into annotation costs as well as robustness and variance of the methods. Numerical experiments conducted with two different networks on the Cityscapes dataset clearly demonstrate a reduction of annotation effort compared to random acquisition. Noteworthily, we achieve 95%of the mean Intersection over Union (mIoU), using MetaBox+ compared to when training with the full dataset, with only 10.47% / 32.01% annotation effort for the two networks, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源