论文标题

AE-NETV2:图像融合效率和网络体系结构的优化

AE-Netv2: Optimization of Image Fusion Efficiency and Network Architecture

论文作者

Fang, Aiqing, Zhao, Xinbo, Yang, Jiaqi, Qin, Beibei, Zhang, Yanning

论文摘要

现有的图像融合方法几乎没有研究对图像融合效率和网络体系结构的关注。但是,图像融合的效率和准确性对实际应用有重要影响。为了解决此问题,我们提出了一个\ textIt {有效的自主进化图像融合方法,由AE-NETV2}配音。与基于深度学习的其他图像融合方法不同,AE-NETV2受人脑认知机制的启发。首先,我们讨论了不同网络体系结构对图像融合质量和融合效率的影响,该效率为图像融合体系结构设计提供了参考。其次,我们探讨了合并层对图像融合任务的影响,并提出了使用池层的图像融合方法。最后,我们探讨了不同图像融合任务的典型性和特征,该任务为进一步研究人类大脑在图像融合领域的持续学习特征提供了研究基础。全面的实验证明了AE-NETV2与不同融合任务中的最先进方法相比,GTX 2070上的实时速度为100+ fps。在基于深度学习的所有测试方法中,AE-NETV2具有更快的速度,较小的模型大小和更好的鲁棒性。

Existing image fusion methods pay few research attention to image fusion efficiency and network architecture. However, the efficiency and accuracy of image fusion has an important impact in practical applications. To solve this problem, we propose an \textit{efficient autonomous evolution image fusion method, dubed by AE-Netv2}. Different from other image fusion methods based on deep learning, AE-Netv2 is inspired by human brain cognitive mechanism. Firstly, we discuss the influence of different network architecture on image fusion quality and fusion efficiency, which provides a reference for the design of image fusion architecture. Secondly, we explore the influence of pooling layer on image fusion task and propose an image fusion method with pooling layer. Finally, we explore the commonness and characteristics of different image fusion tasks, which provides a research basis for further research on the continuous learning characteristics of human brain in the field of image fusion. Comprehensive experiments demonstrate the superiority of AE-Netv2 compared with state-of-the-art methods in different fusion tasks at a real time speed of 100+ FPS on GTX 2070. Among all tested methods based on deep learning, AE-Netv2 has the faster speed, the smaller model size and the better robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源