论文标题
使用卷积神经网络基于数据增强的恶意软件检测
Data Augmentation Based Malware Detection using Convolutional Neural Networks
论文作者
论文摘要
最近,由于网络世界中恶意软件的持续增长,网络攻击已被广泛看到。这些攻击不仅会对最终用户,而且对公司计算机系统造成不可逆转的损害。 WannaCry和Petya等勒索软件攻击专门针对制造重要的基础设施,例如机场和渲染操作过程。因此,它在数量,多功能性和复杂性方面引起了越来越多的关注。这种类型的恶意软件的最重要特征是,它们在从一台计算机传播到另一台计算机时会改变形状。由于基于标准的签名检测软件无法识别此类恶意软件,因为它们在每个受污染的计算机上都有不同的特征。本文旨在提供图像增强增强的深度卷积神经网络(CNN)模型,以在变质恶意软件环境中检测恶意软件家族。本文模型结构的主要贡献包括三个组件,包括从恶意软件样本中产生图像,图像增强,最后一个是使用卷积神经网络模型对恶意软件家族进行分类。在第一个组件中,收集的恶意软件样本是使用窗口技术将二进制表示的转换为3通道图像。系统的第二个组件创建图像的增强版本,最后一个组件构建了分类模型。在这项研究中,使用了五种用于恶意软件家族检测的深层卷积神经网络模型。
Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCry and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the paper's model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.