论文标题
通过球形切片融合的Gromov Wasserstein改善关系正规化自动编码器
Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein
论文作者
论文摘要
关系正则化自动编码器(RAE)是一个框架,可以通过使重建损失以及潜在空间上的关系正则化来了解数据的分布。最近的尝试减少先前和聚集后分布之间的内部差异的尝试是在这些分布之间融合切成薄片的Gromov-Wasserstein(SFG)。这种方法具有弱点,因为它类似地对待每个切片方向,因此几个方向对判别任务没有用。为了改善差异并因此,关系正则化,我们提出了一种新的关系差异,称为球形切片的Gromov Wasserstein(SSFG),可以找到以von Mises-fisher分布为特征的预测领域。然后,我们介绍了SSFG的两个变体以提高其性能。第一个变体被称为混合球形融合的Gromov Wasserstein(MSSFG),用Von Mises-fisher分布的混合物代替了VMF分布,以捕获彼此遥远的方向的多个重要区域。第二个变体被命名为Power Spherical Cherical Slecing Fused Gromov Wasserstein(PSSFG),用功率球形分布代替了VMF分布,以改善高维设置中的采样时间。然后,我们将新差异应用于RAE框架以实现其新变体。最后,我们进行了广泛的实验,以表明新提出的自动编码器在学习潜在的歧管结构,图像产生和重建方面具有有利的性能。
Relational regularized autoencoder (RAE) is a framework to learn the distribution of data by minimizing a reconstruction loss together with a relational regularization on the latent space. A recent attempt to reduce the inner discrepancy between the prior and aggregated posterior distributions is to incorporate sliced fused Gromov-Wasserstein (SFG) between these distributions. That approach has a weakness since it treats every slicing direction similarly, meanwhile several directions are not useful for the discriminative task. To improve the discrepancy and consequently the relational regularization, we propose a new relational discrepancy, named spherical sliced fused Gromov Wasserstein (SSFG), that can find an important area of projections characterized by a von Mises-Fisher distribution. Then, we introduce two variants of SSFG to improve its performance. The first variant, named mixture spherical sliced fused Gromov Wasserstein (MSSFG), replaces the vMF distribution by a mixture of von Mises-Fisher distributions to capture multiple important areas of directions that are far from each other. The second variant, named power spherical sliced fused Gromov Wasserstein (PSSFG), replaces the vMF distribution by a power spherical distribution to improve the sampling time in high dimension settings. We then apply the new discrepancies to the RAE framework to achieve its new variants. Finally, we conduct extensive experiments to show that the new proposed autoencoders have favorable performance in learning latent manifold structure, image generation, and reconstruction.