论文标题
DLGNET任务:用于建模多型多域任务对话的端到端神经网络框架
DLGNet-Task: An End-to-end Neural Network Framework for Modeling Multi-turn Multi-domain Task-Oriented Dialogue
论文作者
论文摘要
以任务为导向的对话(TOD)需要复杂的相互交织,以确保许多单独控制的组件可解释性和可验证性。这使得很难采用流线型端到端开放域对话系统的多型多域对话生成能力。在本文中,我们提出了一个新的框架DLGNET任务,这是一个统一的面向任务的对话系统,该系统采用自回归变压器网络(例如DLGNET和GPT-2/3)来完成多转移多域对话中的用户任务。我们的框架享受模块化方法的可控,可验证和可解释的输出,以及端到端系统的开发,部署和维护成本的低。将开放域系统组件视为其他TOD系统模块,允许DLGNET任务学习现有模块化方法的所有功能块的输入和输出的联合分布,例如自然语言理解(NLU),州跟踪,行动策略,行动政策,以及自然语言的生成(NLG)。我们没有像在现实世界中那样单独训练模块,而是通过适当的模块分离对它们共同训练它们。当在MultiWoz2.1数据集上进行评估时,DLGNET-TASK显示出与现有最新方法的可比性。此外,在对话式AI系统中使用DLGNET任务降低了开发,部署和维护智能助手所需的努力水平。
Task oriented dialogue (TOD) requires the complex interleaving of a number of individually controllable components with strong guarantees for explainability and verifiability. This has made it difficult to adopt the multi-turn multi-domain dialogue generation capabilities of streamlined end-to-end open-domain dialogue systems. In this paper, we present a new framework, DLGNet-Task, a unified task-oriented dialogue system which employs autoregressive transformer networks such as DLGNet and GPT-2/3 to complete user tasks in multi-turn multi-domain conversations. Our framework enjoys the controllable, verifiable, and explainable outputs of modular approaches, and the low development, deployment and maintenance cost of end-to-end systems. Treating open-domain system components as additional TOD system modules allows DLGNet-Task to learn the joint distribution of the inputs and outputs of all the functional blocks of existing modular approaches such as, natural language understanding (NLU), state tracking, action policy, as well as natural language generation (NLG). Rather than training the modules individually, as is common in real-world systems, we trained them jointly with appropriate module separations. When evaluated on the MultiWOZ2.1 dataset, DLGNet-Task shows comparable performance to the existing state-of-the-art approaches. Furthermore, using DLGNet-Task in conversational AI systems reduces the level of effort required for developing, deploying, and maintaining intelligent assistants at scale.