论文标题
来自多模式规格的最佳神经程序合成
Optimal Neural Program Synthesis from Multimodal Specifications
论文作者
论文摘要
多模式程序综合,利用不同类型的用户输入来综合所需程序,是将程序合成到充满挑战的设置的有吸引力的方法;但是,它需要像自然语言一样集成用户的嘈杂信号,并在程序的行为上具有严格的限制。本文提出了一种最佳的神经综合方法,该方法的目标是找到满足用户提供约束的程序,同时还可以最大程度地提高程序对神经模型的分数。具体而言,我们专注于多模式合成任务,其中使用自然语言(NL)和输入输出示例的组合表达用户意图。我们方法的核心是一种自上而下的复发神经模型,该模型将分布放在NL输入条件的抽象语法树上。该模型不仅允许在句法有效的程序的空间上有效搜索,而且使我们能够利用自动化程序分析技术来基于部分程序在用户的约束方面基于部分程序的不可见性来修剪搜索空间。多模式合成数据集(structuredregex)的实验结果表明,我们的方法在准确性和效率方面大大优于先前最新技术,并更频繁地发现模型 - 最佳程序。
Multimodal program synthesis, which leverages different types of user input to synthesize a desired program, is an attractive way to scale program synthesis to challenging settings; however, it requires integrating noisy signals from the user, like natural language, with hard constraints on the program's behavior. This paper proposes an optimal neural synthesis approach where the goal is to find a program that satisfies user-provided constraints while also maximizing the program's score with respect to a neural model. Specifically, we focus on multimodal synthesis tasks in which the user intent is expressed using a combination of natural language (NL) and input-output examples. At the core of our method is a top-down recurrent neural model that places distributions over abstract syntax trees conditioned on the NL input. This model not only allows for efficient search over the space of syntactically valid programs, but it allows us to leverage automated program analysis techniques for pruning the search space based on infeasibility of partial programs with respect to the user's constraints. The experimental results on a multimodal synthesis dataset (StructuredRegex) show that our method substantially outperforms prior state-of-the-art techniques in terms of accuracy and efficiency, and finds model-optimal programs more frequently.