论文标题

Keller-Segel系统中通量限制的关键爆炸指数

A critical blow-up exponent for flux limitation in a Keller-Segel system

论文作者

Winkler, Michael

论文摘要

抛物线 - 涡旋交叉扩散系统\ [ \ left \ {\ begin {array} {l} u_t =ΔU-\ nabla \ cdot \ big(uf(| \ nabla v |^2)\ nabla v \ big),\\ [1mm] 0 =ΔV -μ+ u, \ qquad \int_Ωv= 0, \ Qquad μ:= \ frac {1} {|ω|} \int_Ωudx, \ end {array} \ right。 \]在平滑界面$ω\ subset r^n $,$ n \ ge 1 $中的均匀的neumann-type边界条件一起考虑,其中$ f $概述了\ [ f(ξ)=(1+ξ)^{ - α}, \qquadξ\ ge 0, \ qquad \ mbox {对于所有}ξ\ ge 0,\ \],$α\在r $中。 在此框架中,主要结果断言,如果$ n \ ge 2 $,$ω$是一个球,\ [ 然后在一组相当大的径向对称初始数据中,α<\ frac {n-2} {2(n-1)},\ \ \ \],相关的初始值问题允许相对于其第一个组件的$ l^\ infty $ norm在有限的时间内爆炸的解决方案。 这是通过第二个陈述来补充的,该声明确保一般而言,不一定是对称的设置,如果$ n = 1 $和$α\ in r $中是任意的,或$ n \ ge 2 $和$α> \ frac {n-2} {n-2} {2(n-1)} $,则在义务上统治了任何企业,因此,任何爆炸都在不连续的情况下进行了裁定,并连续地进行了仲裁,并且是不断的,并且是连续的。

The parabolic-elliptic cross-diffusion system \[ \left\{ \begin{array}{l} u_t = Δu - \nabla \cdot \Big(uf(|\nabla v|^2) \nabla v \Big), \\[1mm] 0 = Δv - μ+ u, \qquad \int_Ωv=0, \qquad μ:=\frac{1}{|Ω|} \int_Ωu dx, \end{array} \right. \] is considered along with homogeneous Neumann-type boundary conditions in a smoothly bounded domain $Ω\subset R^n$, $n\ge 1$, where $f$ generalizes the prototype given by \[ f(ξ) = (1+ξ)^{-α}, \qquad ξ\ge 0, \qquad \mbox{for all } ξ\ge 0, \] with $α\in R$. In this framework, the main results assert that if $n\ge 2$, $Ω$ is a ball and \[ α<\frac{n-2}{2(n-1)}, \] then throughout a considerably large set of radially symmetric initial data, an associated initial value problem admits solutions blowing up in finite time with respect to the $L^\infty$ norm of their first components. This is complemented by a second statement which ensures that in general and not necessarily symmetric settings, if either $n=1$ and $α\in R$ is arbitrary, or $n\ge 2$ and $α>\frac{n-2}{2(n-1)}$, then any explosion is ruled out in the sense that for arbitrary nonnegative and continuous initial data, a global bounded classical solution exists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源